Techniques for characterizing the hydraulic properties and groundwater flow processes of aquifers are essential to design hydrogeologic conceptual models. In this study, rapid time series temperature profiles within open-groundwater wells in fractured rock were measured using fiber optic distributed temperature sensing (FO-DTS). To identify zones of active groundwater flow, two continuous electrical heating cables were installed alongside a FO-DTS cable to heat the column of water within the well and to create a temperature difference between the ambient temperature of the groundwater in the aquifer and that within the well. Additional tests were performed to examine the effects of pumping on hydraulic fracture interconnectivity around the well and to identify zones of increased groundwater flow. High- and low-resolution FO-DTS cable configurations were examined to test the sensitivities of the technique and compared with downhole video footage and geophysical logging to confirm the zones of active groundwater flow. Two examples are presented to demonstrate the usefulness of this new technique for rapid characterization of fracture zones in open boreholes. The combination of the FO-DTS and heating cable has excellent scope as a rapid appraisal tool for borehole construction design and improving hydrogeologic conceptual models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/gwat.12157 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!