Single-molecule enzymology provides an unprecedented level of detail about aspects of enzyme mechanisms which have been very difficult to probe in bulk. One such aspect is intramolecular electron transfer (ET), which is a recurring theme in the research on oxidoreductases containing multiple redox-active sites. We measure the intramolecular ET rates between the copper centers of the small laccase from Streptomyces coelicolor at room temperature and pH 7.4, one molecule at a time, during turnover. The forward and backward rates across many molecules follow a log-normal distribution with means of 460 and 85 s(-1), respectively, corresponding to activation energies of 347 and 390 meV for the forward and backward rates. The driving force and the reorganization energy amount to 0.043 and 1.5 eV, respectively. The spread in rates corresponds to a spread of ∼30 meV in the activation energy. The second-order rate constant for reduction of the T1 site amounts to 2.9 × 10(4) M(-1) s(-1). The mean of the distribution of forward ET rates is higher than the turnover rate from ensemble steady-state measurements and, thus, is not rate limiting.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja411078bDOI Listing

Publication Analysis

Top Keywords

small laccase
8
forward backward
8
backward rates
8
rates
5
time intramolecular
4
intramolecular electron-transfer
4
electron-transfer kinetics
4
kinetics small
4
laccase observed
4
observed turnover
4

Similar Publications

This short review explores the enzymatic treatment of lignin in alkaline homogeneous systems, focusing on alkaliphilic laccases. In acidic conditions, native laccases are known to promote lignin polymerization, while the addition of mediators enables depolymerization into valuable small molecules. Alkaliphilic laccases, which remain active in basic pH where the vast majority of industrial lignins are soluble, present an interesting alternative.

View Article and Find Full Text PDF

Multi-Functional Bio-HJzyme Engineered Polyetheretherketone Implant with Cascade-Amplification Therapeutic Capabilities Toward Intractable Implant-Associated Infections.

Small

December 2024

State Key Laboratory of Oral Diseases, School of Chemical Engineering, National Center for Stomatology & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China.

Intractable implant-associated infections (IAIs) are the primary cause of prosthetic implant failure, particularly in the context of diabetes mellitus. There is an urgent need to design and construct versatile engineered implants integrated with cascade amplification therapeutic modality to significantly improve the treatment of diabetic IAIs. To address this issue, a multi-functional MXene/AgPO@glucose oxidase bio-heterojunction enzyme (M/A@GOx bio-HJzyme) coating is developed, which is decorated with an inert sulfonated polyetheretherketone implant (SP-M/A@G) via hydrothermal treatment and layered deposition.

View Article and Find Full Text PDF

Nanozymes have recently gained attention for their low cost and high stability. However, unlike natural enzymes, they often exhibit multiple enzyme-like activities, complicating their use in selective bioassays. Since HO and O are common substrates in these reactions, controlling their activation-and thus reaction specificity-is crucial.

View Article and Find Full Text PDF

Introduction: Laccases are blue-multicopper containing enzymes that are known to play a role in the bioconversion of recalcitrant compounds. Their role in free radical polymerization of aromatic compounds for their valorization remains underexplored. In this study, we used a pBAD plasmid containing a previously characterized CotA laccase gene (abbreviated as -Lacc) from strain ATCC 9945a to express this enzyme and explore its biotransformation/polymerization potential on β-naphthol.

View Article and Find Full Text PDF
Article Synopsis
  • Enzyme immobilisation is crucial for creating stable biocatalysts that can be reused, but the behavior of enzymes on solid supports, especially under operational conditions, is not fully understood.
  • X-ray fluorescence imaging was used to study structural changes in a biocatalyst made from two unmodified metalloenzymes (laccase and dehydrogenase) when exposed to high temperatures or other operational conditions.
  • Findings reveal that while both protein and metal components rearrange during usage, they move as a unit, causing minor structural changes but leading to the biocatalyst's eventual exhaustion, highlighting the need for better understanding using advanced imaging techniques for improved bioprocesses.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!