AI Article Synopsis

  • The study explores the brain structure of the pygmy hippopotamus, an area that has been largely unexplored due to a lack of detailed research on its internal morphology.
  • By using various histological techniques and MRI imaging, the researchers provide valuable data on the neuroanatomy of this species, comparing its cortical features to those of both cetaceans (like whales) and artiodactyls (even-toed ungulates).
  • The findings reveal unique characteristics of the pygmy hippopotamus brain, indicating shared traits with cetaceans and artiodactyls, which can help in understanding evolutionary adaptations to aquatic life.

Article Abstract

The structure of the hippopotamus brain is virtually unknown because few studies have examined more than its external morphology. In view of their semiaquatic lifestyle and phylogenetic relatedness to cetaceans, the brain of hippopotamuses represents a unique opportunity for better understanding the selective pressures that have shaped the organization of the brain during the evolutionary process of adaptation to an aquatic environment. Here we examined the histology of the cerebral cortex of the pygmy hippopotamus (Hexaprotodon liberiensis) by means of Nissl, Golgi, and calretinin (CR) immunostaining, and provide a magnetic resonance imaging (MRI) structural and volumetric dataset of the anatomy of its brain. We calculated the corpus callosum area/brain mass ratio (CCA/BM), the gyrencephalic index (GI), the cerebellar quotient (CQ), and the cerebellar index (CI). Results indicate that the cortex of H. liberiensis shares one feature exclusively with cetaceans (the lack of layer IV across the entire cerebral cortex), other features exclusively with artiodactyls (e.g., the morphologiy of CR-immunoreactive multipolar neurons in deep cortical layers, gyrencephalic index values, hippocampus and cerebellum volumetrics), and others with at least some species of cetartiodactyls (e.g., the presence of a thick layer I, the pattern of distribution of CR-immunoreactive neurons, the presence of von Economo neurons, clustering of layer II in the occipital cortex). The present study thus provides a comprehensive dataset of the neuroanatomy of H. liberiensis that sets the ground for future comparative studies including the larger Hippopotamus amphibius.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ar.22875DOI Listing

Publication Analysis

Top Keywords

cerebral cortex
12
cortex pygmy
8
pygmy hippopotamus
8
hippopotamus hexaprotodon
8
hexaprotodon liberiensis
8
hippopotamus
4
liberiensis
4
liberiensis cetartiodactyla
4
cetartiodactyla hippopotamidae
4
hippopotamidae mri
4

Similar Publications

Objective: Temporal lobe epilepsy with hippocampal sclerosis (HS) is a surgically remediable syndrome. We determined temporal trends in the prevalence of hippocampal sclerosis surgeries and related factors.

Methods: We analysed a prospective cohort of adults who underwent epilepsy surgery at the NHNN, London, between 1990 and 2019.

View Article and Find Full Text PDF

Chronic pain is a prevalent and debilitating condition whose neural mechanisms are incompletely understood. An imbalance of cerebral excitation and inhibition (E/I), particularly in the medial prefrontal cortex (mPFC), is believed to represent a crucial mechanism in the development and maintenance of chronic pain. Thus, identifying a non-invasive, scalable marker of E/I could provide valuable insights into the neural mechanisms of chronic pain and aid in developing clinically useful biomarkers.

View Article and Find Full Text PDF

Staining brain slices with acetoxymethyl ester (AM) Ca dyes is a straightforward procedure to load multiple cells, and Fluo-4 is a commonly used high-affinity indicator due to its very large dynamic range. It has been shown that this dye preferentially stains glial cells, providing slow and large Ca transients, but it is questionable whether and at which temporal resolution it can also report Ca transients from neuronal cells. Here, by electrically stimulating mouse hippocampal slices, we resolved fast neuronal signals corresponding to 1%-3% maximal fluorescence changes.

View Article and Find Full Text PDF

Approximately 15%-20% of school-aged children suffer from mathematics learning difficulties (MLD). Most children with developmental dyscalculia (DD) or MLD also have comorbid cognitive deficits. Recent literature suggests that research should focus on uncovering the neural underpinnings of MLD across more inclusive samples, rather than limiting studies to pure cases of DD or MLD with highly stringent inclusion criteria.

View Article and Find Full Text PDF

Background And Purpose: This study aims to investigate the longitudinal changes in translocator protein (TSPO) following stroke in different brain regions and potential associations with chronic brain infarction.

Methods: Twelve patients underwent SPECT using the TSPO tracer 6-Chloro-2-(4'-123I-Iodophenyl)-3-(N,N-Diethyl)-Imidazo[1,2-a]Pyridine-3-Acetamide, as well as structural MRI, at 10, 41, and 128 days (median) after ischemic infarction in the middle cerebral artery. TSPO expression was measured in lesional (MRI lesion and SPECT lesion), connected (pons and ipsilesional thalamus), and nonconnected (ipsilesional cerebellum and contralesional occipital cortex) regions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!