Hereditary inclusion body myopathy (GNE myopathy) is a neuromuscular disorder due to mutation in key sialic acid biosynthetic enzyme, GNE. The pathomechanism of the disease is poorly understood as GNE is involved in other cellular functions beside sialic acid synthesis. In the present study, a HEK293 cell-based model system has been established where GNE is either knocked down or over-expressed along with pathologically relevant GNE mutants (D176V and V572L). The subcellular distribution of recombinant GNE and its mutant showed differential localization in the cell. The effect of mutation on GNE function was investigated by studying hyposialylation of cell membrane receptor, β1-integrin. Hyposialylated β1-integrin localized to internal vesicles that was restored upon supplementation with sialic acid. Fibronectin stimulation caused migration of hyposialylated β1-integrin to the cell membrane and co-localization with focal adhesion kinase (FAK) leading to increased focal adhesion formation. This further activated FAK and Src, downstream signaling molecules and led to increased cell adhesion. This is the first report to show that mutation in GNE affects β1-integrin-mediated cell adhesion process in GNE mutant cells.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12035-013-8604-6DOI Listing

Publication Analysis

Top Keywords

cell adhesion
12
sialic acid
12
gne
10
gne β1-integrin-mediated
8
β1-integrin-mediated cell
8
gne mutant
8
mutation gne
8
cell membrane
8
hyposialylated β1-integrin
8
focal adhesion
8

Similar Publications

Purpose: Low-dose CT (LDCT) screening effectively reduces lung adenocarcinoma (LUAD) mortality. However, accurately evaluating the malignant potential of indeterminate lung nodules remains a challenge. Carcinoembryonic antigen cell adhesion molecule 6 (CEACAM6), a potential biomarker for distinguishing benign pulmonary nodules from LUAD, may be leveraged for noninvasive positron emission tomography (PET) imaging to aid LUAD diagnosis.

View Article and Find Full Text PDF

The novel piperine derivative MHJ-LN inhibits breast cancer by inducing apoptosis via p53 activation.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China.

Triple-negative breast cancer (TNBC) is characterized by high aggressiveness and recurrence rates due to the lack of effective treatment options. Piperine, a natural alkaloid extracted from black pepper, has demonstrated significant anticancer potential in recent years. Therefore, developing piperine derivatives to enhance its anticancer effects holds critical clinical significance.

View Article and Find Full Text PDF

Solution-Gated Thin Film Transistor Biosensor-Based SnO Amorphous Film for Label-Free Detection of Epithelial Cell Adhesion Molecules.

ACS Sens

January 2025

Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.

Epithelial cell adhesion molecule (EpCAM) was considered to be an important marker of multiple tumors, and its high expression is closely related to the early diagnosis and treatment of tumors. At present, metal oxide semiconductors have become a key component of biosensor and bioelectronics technology. Tin oxide shows great potential for development because of its nontoxic, nonpolluting, low price, and excellent electrical properties.

View Article and Find Full Text PDF

RhoA and Rac1 as Mechanotransduction Mediators in Colorectal Cancer.

Adv Biol (Weinh)

January 2025

Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, Brisbane, QLD, 4111, Australia.

Colorectal cancer (CRC) remains a leading cause of cancer-related deaths, creating an urgent need for innovative diagnostic solutions. Mechanobiology, a cutting-edge field that investigates how physical forces influence cell behavior, is now revealing new insights into cancer progression. This research focuses on two crucial players: RhoA and Rac1, small yet powerful proteins that regulate the structure and movement of cancer cells.

View Article and Find Full Text PDF

Effectively Guiding Cell Elongation and Alignment by Constructing Micro/Nano Hierarchical Patterned Titania on Titanium Substrate.

Biotechnol Bioeng

January 2025

National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, PR China.

Based on the innate sensitivity of cell to substrate topographical cues, modulating cell-directed growth behavior is crucial for promoting tissue repair and reconstruction. Although photolithography technology has been extensively employed to fabricate a variety of anisotropic patterned structures to guide cell growth, it remains a great challenge to design high-resolution micro/nano hierarchical structures directly onto medical titanium (Ti)-based implants. Herein, we present a rapid, reliable and reproducible approach combining photolithography and hydrothermal technology to construct a micro/nano hierarchical structure including anisotropic micro-strips and a porous structure composed of TiO nanotubes features.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!