Natural geranyl compounds are known to exhibit important biological activities. In this work a series of geranylphenols were synthesized to evaluate their effect on the mycelial growth of Botrytis cinerea. Geranyl derivatives were synthesized by direct geranylation reactions between the corresponding phenol derivatives and geraniol, using BF3.OEt2 as catalyst and AgNO3 as secondary catalyst. Previously reported molecules [geranylhydroquinone (2), geranylhydroquinone diacetate (6) and geranylphloroglucinol (9)], and new substances [(E)-4-(3,7-dimethylocta-2,6-dienyl)benzene-1,2,3-triol (geranyl-pyrogallol, 7), (E)-4-(3,7-dimethylocta-2,6-dienyl)benzene-1,2,3-triyl triacetate (8), (E)-2-(3,7-dimethylocta-2,6-dienyl)benzene-1,3,5-triyl triacetate geranylphloroglucinol triacetate (10), 2,4-bis((E)-3,7-dimethylocta-2,6-dienyl)benzene-1,3,5-triyl triacetate (11), 2,6-bis((E)-3,7-dimethylocta-2,6-dienyl)-3,5-dihydroxyphenyl acetate (12)], were obtained. All compounds were characterized by IR, HRMS and NMR spectroscopic data. The inhibitory effect of the synthesized compounds on the mycelial growth of Botrytis cinerea was tested in vitro. Excepting compound 11, all substances constrained the mycelial growth of Botrytis cinerea. The antifungal activity depends on the chemical structure of geranylphenol derivatives. Compounds 2 and 9 were the more effective substances showing inhibition degrees higher than those obtained with the commercial fungicide Captan, even at lower concentrations. Monosubstitution on the aromatic nucleus by a geranyl chain seems to be more effective for the inhibition of mycelial growth than a double substitution. These results suggest that the new derivatives of geranylphenols have the ability to block the mycelial development of the plant pathogen B. cinerea and that this capacity depends strongly on the structural features and lipophilicity of the compounds.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6271137 | PMC |
http://dx.doi.org/10.3390/molecules19021512 | DOI Listing |
ACS Omega
January 2025
Laboratory of Biological Control of Plant Disease and Laboratory of Plant Biotechnology, Institute of Biotechnology, University of Caxias do Sul, Rua Francisco Getúlio Vargas, 1130, Petrópolis, Caxias do Sul, Rio Grande do Sul 95070-560, Brazil.
This work aimed to evaluate the potential of spp. in the bioremediation of herbicides and biostimulation of plants in herbicide-contaminated soils. In the first phase, the experiment followed a completely randomized design in a 4 × 3 × 4 factorial scheme with five replications, four strains of spp.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Life Sciences, Northwest Normal University, Lanzhou 730070, China; Gansu Engineering Research Center of High Value-added Utilization of Distinctive Agricultural Products, Lanzhou 730070, China. Electronic address:
The polysaccharide chitosan possesses broad-spectrum antimicrobial properties and has proven effective in controlling various postharvest diseases in fruits. Nevertheless, the fundamental mechanisms underlying its action remain unclear. In this study, the antifungal effects of chitosan with different molecular weights against Fusarium avenaceum, a pathogen causing root rot in Angelica sinensis, were evaluated.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Laboratorio de Fitopatología, Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Casilla 4-D, Quillota 2260000, Chile.
In Chile and worldwide, walnut () production faces significant losses due to crown and root rot caused by the phytopathogen . Currently, control methods have proven insufficient or unfavorable for the environment, increasing the need for sustainable alternatives. This research evaluates nanoemulsions based on extracts of medicinal plants endemic to Chile to control in walnut crops.
View Article and Find Full Text PDFMicroorganisms
January 2025
Department of Food Science and Technologies for Sustainable Agro-Food Chain (DiSTAS), Università Cattolica del Sacro Cuore, 29122 Piacenza, PC, Italy.
This study investigated whether viable cells, dead cells or cell-free supernatants (CFS) were responsible for the biocontrol effect of strains from two important bacterial genera, and , known for their antifungal properties against plant pathogens and food spoilage microorganisms. Specifically, the capability of these strains to produce extracellular hydrolytic enzymes on specified media was assessed, along with their effectiveness in inhibiting the mycelial growth of several phytopathogenic fungi (, , and ) using dual culture plate assays. Results from these inhibition assays revealed that PF05 and LMG 23520 strains were the most effective in suppressing fungal growth, especially .
View Article and Find Full Text PDFMicroorganisms
January 2025
College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
has a strong cadmium-enrichment ability, posing a potential threat to human health. However, the cadmium tolerance and detoxification mechanisms of are not understood. We investigated the physiological responses, subcellular distribution, and chemical forms of cadmium in two strains (1504 and L130) with contrasting cadmium tolerance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!