The protein-protein interaction (PPI) between menin and mixed lineage leukemia (MLL) plays a critical role in acute leukemias, and inhibition of this interaction represents a new potential therapeutic strategy for MLL leukemias. We report development of a novel class of small-molecule inhibitors of the menin-MLL interaction, the hydroxy- and aminomethylpiperidine compounds, which originated from HTS of ∼288000 small molecules. We determined menin-inhibitor co-crystal structures and found that these compounds closely mimic all key interactions of MLL with menin. Extensive crystallography studies combined with structure-based design were applied for optimization of these compounds, resulting in MIV-6R, which inhibits the menin-MLL interaction with IC50 = 56 nM. Treatment with MIV-6 demonstrated strong and selective effects in MLL leukemia cells, validating specific mechanism of action. Our studies provide novel and attractive scaffold as a new potential therapeutic approach for MLL leukemias and demonstrate an example of PPI amenable to inhibition by small molecules.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3983337PMC
http://dx.doi.org/10.1021/jm401868dDOI Listing

Publication Analysis

Top Keywords

small-molecule inhibitors
8
lineage leukemia
8
leukemia mll
8
closely mimic
8
protein-protein interaction
8
potential therapeutic
8
mll leukemias
8
menin-mll interaction
8
small molecules
8
mll
6

Similar Publications

Unlabelled: Dysregulated epigenetic programs that restrict differentiation, reactivate fetal genes, and confer phenotypic plasticity are critical to colorectal cancer (CRC) development. By screening a small molecule library targeting epigenetic regulators using our dual reporter system, we found that inhibiting histone deacetylase (HDAC) 1/2 promotes CRC differentiation and anti-tumor activity. Comprehensive biochemical, chemical, and genetic experiments revealed that on-target blockade of the HDAC1/2 catalytic domain mediated the differentiated phenotype.

View Article and Find Full Text PDF

Background: Previously we found that increasing fibroblast growth factor (FGF) signaling in the neural crest cells within the frontonasal process (FNP) of the chicken embryo caused dysmorphology that was correlated with reduced proliferation, disrupted cellular orientation, and lower MAPK activation but no change in PLCy and PI3K activation. This suggests RTK signaling may drive craniofacial morphogenesis through specific downstream effectors that affect cellular activities. In this study we inhibited three downstream branches of RTK signaling to determine their role in regulating cellular activities and how these changes affect morphogenesis of the FNP.

View Article and Find Full Text PDF

Osteosarcoma (OS) is the most common primary malignant bone tumor in childhood. Patients who present with metastatic disease at diagnosis or relapse have a very poor prognosis, and this has not changed over the past four decades. The Wnt signaling pathway plays a role in regulating osteogenesis and is implicated in OS pathogenesis.

View Article and Find Full Text PDF

Cannabidiol (CBD) is a prominent non-psychoactive small molecule produced by cannabis plants used clinically as an antiepileptic. Here, we show CBD and other cannabinoids are potent inhibitors of mechanosensitive two-pore domain K+ (K2P) channels, including TRAAK and TREK-1 that contribute to spike propagation in myelinated axons. Five TRAAK mutations that cause epilepsy or the neurodevelopmental syndrome FHEIG (facial dysmorphism, hypertrichosis, epilepsy, intellectual/developmental delay, and gingival overgrowth) retain sensitivity to cannabinoid inhibition.

View Article and Find Full Text PDF

Unlabelled: Epigenetic complexes tightly regulate gene expression and colocalize with RNA splicing machinery; however, the consequences of these interactions are uncertain. Here, we identify unique interactions of the CoREST repressor complex with RNA splicing factors and their functional consequences in tumorigenesis. Using mass spectrometry, in vivo binding assays, and cryo-EM we find that CoREST complex-splicing factor interactions are direct and perturbed by the CoREST complex inhibitor, corin, leading to extensive changes in RNA splicing in melanoma and other malignancies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!