Objective: To determine the effects of interleukin (IL)-6 and IL-1β stimulation on expression of growth differentiation factor (GDF)-5 and Wnt signaling pathway genes in equine chondrocytes.

Sample: Macroscopically normal articular cartilage samples from 6 horses and osteochondral fragments (OCFs) from 3 horses.

Procedures: Chondrocyte pellets were prepared and cultured without stimulation or following stimulation with IL-6 or IL-1β for 1, 2, 12, and 48 hours; expression of GDF-5 was determined with a quantitative real-time PCR assay. Expression of genes in various signaling pathways was determined with microarrays for pellets stimulated for 1 and 2 hours. Immunohistochemical analysis was used to detect GDF-5, glycogen synthase kinase 3β (GSK-3β), and β-catenin proteins in macroscopically normal cartilage samples and OCFs.

Results: Chondrocytes stimulated with IL-6 had significantly higher GDF-5 expression within 2 hours versus unstimulated chondrocytes. Microarray analysis of Wnt signaling pathway genes indicated expression of GSK-3β and coiled-coil domain containing 88C increased after 1 hour and expression of β-catenin decreased after 2 hours of IL-6 stimulation. Results of immunohistochemical detection of proteins were similar to microarray analysis results. Chondrocytes in macroscopically normal articular cartilage and OCFs had immunostaining for GDF-5.

Conclusion And Clinical Relevance: Results indicated IL-6 stimulation decreased chondrocyte expression of the canonical Wnt signaling pathway transactivator β-catenin, induced expression of inhibitors of the Wnt pathway, and increased expression of GDF-5. This suggested IL-6 may inhibit the Wnt signaling pathway with subsequent upregulation of GDF-5 expression. Anabolic extracellular matrix metabolism in OCFs may be attributable to GDF-5 expression. This information could be useful for development of cartilage repair methods.

Download full-text PDF

Source
http://dx.doi.org/10.2460/ajvr.75.2.132DOI Listing

Publication Analysis

Top Keywords

wnt signaling
20
signaling pathway
20
expression
12
pathway genes
12
macroscopically normal
12
gdf-5 expression
12
expression growth
8
growth differentiation
8
genes equine
8
il-6 il-1β
8

Similar Publications

The Role of NF-κB/MIR155HG in Regulating the Stemness and Radioresistance in Breast Cancer Stem Cells.

Front Biosci (Landmark Ed)

January 2025

Department of Chemoradiotherapy, Ningbo No 2 Hospital, 315000 Ningbo, Zhejiang, China.

Background: Breast cancer stem cells (BCSCs) are instrumental in treatment resistance, recurrence, and metastasis. The development of breast cancer and radiation sensitivity is intimately pertinent to long non-coding RNA (lncRNA). This work is formulated to investigate how the lncRNA affects the stemness and radioresistance of BCSCs.

View Article and Find Full Text PDF

Background: Osteoporosis is characterized by the microstructural depletion of bone tissue and decreased bone density, leading to an increased risk of fractures. Nakai, an endemic species of the Korean Peninsula, grows wild in Ulleungdo. In this study, we aimed to investigate the effects of and its components on osteoporosis.

View Article and Find Full Text PDF

() has caused huge economic losses to the cattle industry. The interaction between and host cells is elucidated by screening and identifying the target protein of adhesin on the surface of the host cell membrane. However, the response mechanism of embryonic bovine lung (EBL) cells to infection is not yet fully understood.

View Article and Find Full Text PDF

Cancer stem cells (CSC) are known to be the main source of tumor relapse, metastasis, or multidrug resistance and the mechanisms to counteract or eradicate them and their activity remain elusive. There are different hypotheses that claim that the origin of CSC might be in regular stem cells (SC) and, due to accumulation of mutations, these normal cells become malignant, or the source of CSC might be in any malignant cell that, under certain environmental circumstances, acquires all the qualities to become CSC. Multiple studies indicate that lifestyle and diet might represent a source of wellbeing that can prevent and ameliorate the malignant phenotype of CSC.

View Article and Find Full Text PDF

Identification of Immune Infiltration-Associated CC Motif Chemokine Ligands as Biomarkers and Targets for Colorectal Cancer Prevention and Immunotherapy.

Int J Mol Sci

January 2025

Centre of Biomedical Systems and Informatics, ZJU-UoE Institute, School of Medicine, International Campus, Zhejiang University, Haining 314400, China.

Colorectal cancer (CRC) is the third most common cancer globally, with limited effective biomarkers and sensitive therapeutic targets. An increasing number of studies have highlighted the critical role of tumor microenvironment (TME) imbalances, particularly immune escape due to impaired chemokine-mediated trafficking, in tumorigenesis and progression. Notably, CC chemokines (CCLs) have been shown to either promote or inhibit angiogenesis, metastasis, and immune responses in tumors, thereby influencing cancer development and patient outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!