After herbivory, plants release volatile organic compounds from damaged foliage as well as from nearby undamaged leaves that attract herbivore enemies. Little is known about what controls the volatile emission differences between damaged and undamaged tissues and how these affect the orientation of herbivore enemies. We investigated volatile emission from damaged and adjacent undamaged foliage of black poplar (Populus nigra) after herbivory by gypsy moth (Lymantria dispar) caterpillars and determined the compounds mediating the attraction of the gypsy moth parasitoid Glyptapanteles liparidis (Braconidae). Female parasitoids were more attracted to gypsy moth-damaged leaves than to adjacent non-damaged leaves. The most characteristic volatiles of damaged versus neighbouring undamaged leaves included terpenes, green leaf volatiles and nitrogen-containing compounds, such as aldoximes and nitriles. Electrophysiological recordings and olfactometer bioassays demonstrated the importance of nitrogenous volatiles. Under field conditions, parasitic Hymenoptera were more attracted to traps baited with these substances than most other compounds. The differences in volatile emission profiles between damaged and undamaged foliage appear to be regulated by jasmonate signalling and the local activation of volatile biosynthesis. We conclude that characteristic volatiles from damaged black poplar foliage are essential cues enabling parasitoids to find their hosts.

Download full-text PDF

Source
http://dx.doi.org/10.1111/pce.12287DOI Listing

Publication Analysis

Top Keywords

volatile emission
16
black poplar
12
herbivore enemies
12
undamaged leaves
8
damaged undamaged
8
undamaged foliage
8
gypsy moth
8
characteristic volatiles
8
volatiles damaged
8
damaged
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!