A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Structure/activity relationships of (M)ANT- and TNP-nucleotides for inhibition of rat soluble guanylyl cyclase α1β1. | LitMetric

Structure/activity relationships of (M)ANT- and TNP-nucleotides for inhibition of rat soluble guanylyl cyclase α1β1.

Mol Pharmacol

Department of Medicinal Chemistry II, University of Regensburg, Regensburg, Germany (S.D.); Institute of Pharmacology,(K.Y.D., V.K., R.S.) and Research Core Unit Metabolomics (V.K.), Hannover Medical School, Hannover, Germany; and Institute of Cardiovascular Research, Bayer HealthCare, Wuppertal, Germany (J.-P.S.).

Published: April 2014

AI Article Synopsis

  • Soluble guanylyl cyclase (sGC) is crucial for cardiovascular health by producing cGMP and is activated by nitric oxide, but its regulatory mechanisms remain poorly understood due to the lack of crystal structures for the active form of sGC.
  • Researchers tested 38 purine- and pyrimidine-nucleotides to find high-affinity ligands that stabilize an active sGC conformation, discovering that TNP-GTP and 2'-MANT-3'-dATP were the most effective inhibitors.
  • The study's findings on nucleotide binding interactions could inform future research, facilitating the development of selective inhibitors for sGC and membranous adenylyl cyclases

Article Abstract

Soluble guanylyl cyclase (sGC) plays an important role in cardiovascular function and catalyzes formation of cGMP. sGC is activated by nitric oxide and allosteric stimulators and activators. However, despite its therapeutic relevance, the regulatory mechanisms of sGC are still incompletely understood. A major reason for this situation is that no crystal structures of active sGC have been resolved so far. An important step toward this goal is the identification of high-affinity ligands that stabilize an sGC conformation resembling the active, "fully closed" state. Therefore, we examined inhibition of rat sGCα1β1 by 38 purine- and pyrimidine-nucleotides with 2,4,6,-trinitrophenyl and (N-methyl)anthraniloyl substitutions at the ribosyl moiety and compared the data with that for the structurally related membranous adenylyl cyclases (mACs) 1, 2, 5 and the purified mAC catalytic subunits VC1:IIC2. TNP-GTP [2',3'-O-(2,4,6-trinitrophenyl)-GTP] was the most potent sGCα1β1 inhibitor (Ki, 10.7 nM), followed by 2'-MANT-3'-dATP [2'-O-(N-methylanthraniloyl)-3'-deoxy-ATP] (Ki, 16.7 nM). Docking studies on an sGCαcat/sGCβcat model derived from the inactive heterodimeric crystal structure of the catalytic domains point to similar interactions of (M)ANT- and TNP-nucleotides with sGCα1β1 and mAC VC1:IIC2. Reasonable binding modes of 2'-MANT-3'-dATP and bis-(M)ANT-nucleotides at sGC α1β1 require a 3'-endo ribosyl conformation (versus 3'-exo in 3'-MANT-2'-dATP). Overall, inhibitory potencies of nucleotides at sGCα1β1 versus mACs 1, 2, 5 correlated poorly. Collectively, we identified highly potent sGCα1β1 inhibitors that may be useful for future crystallographic and fluorescence spectroscopy studies. Moreover, it may become possible to develop mAC inhibitors with selectivity relative to sGC.

Download full-text PDF

Source
http://dx.doi.org/10.1124/mol.113.091017DOI Listing

Publication Analysis

Top Keywords

mant- tnp-nucleotides
8
inhibition rat
8
soluble guanylyl
8
guanylyl cyclase
8
potent sgcα1β1
8
sgc
7
sgcα1β1
5
structure/activity relationships
4
relationships mant-
4
tnp-nucleotides inhibition
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!