Current knowledge of the development of the marsupial immune system, particularly in the context of lymphoid tissue development and the appearance of lymphocytes, has been examined and limitations identified. While primary lymphoid tissues like the thymus have been extensively studied, secondary lymphoid tissues such as the spleen and lymph nodes have been examined to a lesser extent, partly due to the difficulty of macroscopically identifying these structures, particularly in very small neonates. In addition, little research has been conducted on the mucosal-associated lymphoid tissues; tissues that directly trap antigens and play an important role in the maturity of adaptive immune responses. Research on the development of the marsupial immune tissues to date serves as a solid foundation for further research, particularly on the mechanisms behind the development of the immune system of marsupials. With the recent sequencing and annotation of whole marsupial genomes, the current wealth of sequence data will be essential in the development of marsupial specific reagents, including antibodies, that are required to widen our specific knowledge of the complex marsupial immune system and its development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jmor.20250 | DOI Listing |
Biol Trace Elem Res
January 2025
School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia.
As teeth develop, their mineralised composition is a bio-recorder of diet, environment, and growth. High-resolution elemental mapping provides a tool to reveal records of life history within teeth. The relative concentrations of a range of trace elements change between in utero development, birth, and weaning in eutherian mammals.
View Article and Find Full Text PDFViruses
November 2024
Division of Human Genetics, School of Medicine, The University of Texas Rio Grande Valley, Edinburg/Harlingen/Brownsville, McAllen, TX 78520, USA.
The Zika virus (ZIKV) epidemic elicited a rapid commitment to the development of animal models for ZIKV research. Non-human primates (NHPs) and mice have made significant contributions to this research, but NHPs are expensive, have a long gestation period, and are available only in small numbers; non-genetically modified mice are resistant to infection. To address these deficiencies, we have established the laboratory opossum, , as a small animal model that complements the mouse and monkey models.
View Article and Find Full Text PDFFront Microbiol
December 2024
Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.
Methanogenic archaea are a group of microorganisms found in the gastrointestinal tract of various herbivores and humans; however, the quantity (intensity) of methane emissions during feed digestion varies. Macropodids, such as the Eastern Gray Kangaroo (), are considered to be low methane-emitting animals, but their gut methanogenic archaea remain poorly characterized. Characterizing methanogens from animals with low methane emissions offers the potential to develop strategies and interventions that reduce methane emissions from livestock.
View Article and Find Full Text PDFIn the present study, helminths from six Didelphis virginiana and one Philander vossi are reported using morphological techniques (clearing, staining, and scanning electron microscopy). Additionally, the 28S rRNA sequences of individuals from nine helminth taxa are provided. Phylogenetic analyses were performed with the new 28S rRNA sequences to confirm the identification and the genealogical relationships of the parasites.
View Article and Find Full Text PDFInt J Parasitol Parasites Wildl
December 2024
Vaxinano SAS, 84 Rue Du Dr Yersin, 59120, Loos, France.
is a ubiquitous parasite causing significant mortality in captive wildlife, especially marsupials. Historically, treatment has been unrewarding and no vaccine was available. An intranasal vaccine based on purified inactivated was developed for toxoplasmosis prevention.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!