Clostridium difficile causes antibiotic-associated diarrhea and pseudomembranous colitis by the actions of Rho-glucosylating toxins A and B. Recently identified hypervirulent strains, which are associated with increased morbidity and mortality, additionally produce the actin-ADP-ribosylating toxin C. difficile transferase (CDT). CDT depolymerizes actin, causes formation of microtubule-based protrusions, and increases pathogen adherence. Here we show that CDT-induced protrusions allow vesicle traffic and contain endoplasmic reticulum tubules, connected to microtubules via the calcium sensor Stim1. The toxin reroutes Rab11-positive vesicles containing fibronectin, which is involved in bacterial adherence, from basolateral to the apical membrane sides in a microtubule- and Stim1-dependent manner. The data yield a model of C. difficile adherence regulated by actin depolymerization, microtubule restructuring, subsequent Stim1-dependent Ca(2+) signaling, vesicle rerouting, and secretion of ECM proteins to increase bacterial adherence.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3926047PMC
http://dx.doi.org/10.1073/pnas.1311589111DOI Listing

Publication Analysis

Top Keywords

clostridium difficile
8
vesicle traffic
8
pathogen adherence
8
bacterial adherence
8
adherence
5
difficile toxin
4
toxin cdt
4
cdt hijacks
4
hijacks microtubule
4
microtubule organization
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!