Foreground segmentation in depth imagery using depth and spatial dynamic models for video surveillance applications.

Sensors (Basel)

Grupo de Tratamiento de Imágenes, E.T.S.I de Telecomunicación, Universidad Politécnica de Madrid, Avenida Complutense 30, Madrid 28040, Spain.

Published: January 2014

Low-cost systems that can obtain a high-quality foreground segmentation almost independently of the existing illumination conditions for indoor environments are very desirable, especially for security and surveillance applications. In this paper, a novel foreground segmentation algorithm that uses only a Kinect depth sensor is proposed to satisfy the aforementioned system characteristics. This is achieved by combining a mixture of Gaussians-based background subtraction algorithm with a new Bayesian network that robustly predicts the foreground/background regions between consecutive time steps. The Bayesian network explicitly exploits the intrinsic characteristics of the depth data by means of two dynamic models that estimate the spatial and depth evolution of the foreground/background regions. The most remarkable contribution is the depth-based dynamic model that predicts the changes in the foreground depth distribution between consecutive time steps. This is a key difference with regard to visible imagery,where the color/gray distribution of the foreground is typically assumed to be constant.Experiments carried out on two different depth-based databases demonstrate that the proposed combination of algorithms is able to obtain a more accurate segmentation of the foreground/background than other state-of-the art approaches.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3958249PMC
http://dx.doi.org/10.3390/s140201961DOI Listing

Publication Analysis

Top Keywords

foreground segmentation
12
dynamic models
8
surveillance applications
8
bayesian network
8
foreground/background regions
8
consecutive time
8
time steps
8
depth
6
foreground
5
segmentation depth
4

Similar Publications

Source-free domain adaptation (SFDA) has become crucial in medical image analysis, enabling the adaptation of source models across diverse datasets without labeled target domain images. Self-training, a popular SFDA approach, iteratively refines self-generated pseudo-labels using unlabeled target domain data to adapt a pre-trained model from the source domain. However, it often faces model instability due to incorrect pseudo-label accumulation and foreground-background class imbalance.

View Article and Find Full Text PDF

Semi-supervised medical image segmentation via weak-to-strong perturbation consistency and edge-aware contrastive representation.

Med Image Anal

January 2025

School of Computer Science and Technology, Harbin Institute of Technology at Shenzhen, Shenzhen, 518055, China; National Key Laboratory of Smart Farm Technologies and Systems, Harbin, 150001, China. Electronic address:

Despite that supervised learning has demonstrated impressive accuracy in medical image segmentation, its reliance on large labeled datasets poses a challenge due to the effort and expertise required for data acquisition. Semi-supervised learning has emerged as a potential solution. However, it tends to yield satisfactory segmentation performance in the central region of the foreground, but struggles in the edge region.

View Article and Find Full Text PDF

In order to achieve infrared aircraft detection under interference conditions, this paper proposes an infrared aircraft detection algorithm based on high-resolution feature-enhanced semantic segmentation network. Firstly, the designed location attention mechanism is utilized to enhance the current-level feature map by obtaining correlation weights between pixels at different positions. Then, it is fused with the high-level feature map rich in semantic features to construct a location attention feature fusion network, thereby enhancing the representation capability of target features.

View Article and Find Full Text PDF

Simple quantitation and spatial characterization of label free cellular images.

Heliyon

December 2024

Human and Animal Physiology, Department Animal Sciences, Wageningen University, De Elst 1, 6708WD, Wageningen, the Netherlands.

Label-free imaging is routinely used during cell culture because of its minimal interference with intracellular biology and capability of observing cells over time. However, label-free image analysis is challenging due to the low contrast between foreground signals and background. So far various deep learning tools have been developed for label-free image analysis and their performance depends on the quality of training data.

View Article and Find Full Text PDF

China's wind power generation is rich in resources and mature technology, but has the problems of harsh power generation environment, high operation and maintenance costs due to complex operating conditions, and serious consequences of failures. For this reason, this paper proposes a more efficient defect identification method for wind turbine blades that have the longest downtime due to faults. Firstly, starting from the characteristics that the blade defects are darker than the surrounding and distributed in block or point shape, the blade images taken by UAV cruise are processed by grey scaling, filtering, histogram equalization and Grab-cut foreground segmentation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!