FGF-21, a novel metabolic regulator, has a robust neuroprotective role and is markedly elevated in neurons by mood stabilizers.

Mol Psychiatry

Section on Molecular Neurobiology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.

Published: February 2015

AI Article Synopsis

Article Abstract

Fibroblast growth factor-21 (FGF-21) is a new member of the FGF super-family and an important endogenous regulator of glucose and lipid metabolism. It has been proposed as a therapeutic target for diabetes and obesity. Its function in the central nervous system (CNS) remains unknown. Previous studies from our laboratory demonstrated that aging primary neurons are more vulnerable to glutamate-induced excitotoxicity, and that co-treatment with the mood stabilizers lithium and valproic acid (VPA) induces synergistic neuroprotective effects. This study sought to identify molecule(s) involved in these synergistic effects. We found that FGF-21 mRNA was selectively and markedly elevated by co-treatment with lithium and VPA in primary rat brain neurons. FGF-21 protein levels were also robustly increased in neuronal lysates and culture medium following lithium-VPA co-treatment. Combining glycogen synthase kinase-3 (GSK-3) inhibitors with VPA or histone deacetylase (HDAC) inhibitors with lithium synergistically increased FGF-21 mRNA levels, supporting that synergistic effects of lithium and VPA are mediated via GSK-3 and HDAC inhibition, respectively. Exogenous FGF-21 protein completely protected aging neurons from glutamate challenge. This neuroprotection was associated with enhanced Akt-1 activation and GSK-3 inhibition. Lithium-VPA co-treatment markedly prolonged lithium-induced Akt-1 activation and augmented GSK-3 inhibition. Akt-1 knockdown markedly decreased FGF-21 mRNA levels and reduced the neuroprotection induced by FGF-21 or lithium-VPA co-treatment. In addition, FGF-21 knockdown reduced lithium-VPA co-treatment-induced Akt-1 activation and neuroprotection against excitotoxicity. Together, our novel results suggest that FGF-21 is a key mediator of the effects of these mood stabilizers and a potential new therapeutic target for CNS disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4113566PMC
http://dx.doi.org/10.1038/mp.2013.192DOI Listing

Publication Analysis

Top Keywords

mood stabilizers
12
fgf-21 mrna
12
lithium-vpa co-treatment
12
akt-1 activation
12
fgf-21
10
markedly elevated
8
therapeutic target
8
synergistic effects
8
lithium vpa
8
fgf-21 protein
8

Similar Publications

Electrochemical aptamer-based (EAB) sensors are a molecular measurement platform that enables the continuous, real-time measurement of a wide range of drugs and biomarkers in situ in the living body. EAB sensors are fabricated by depositing a thiol-modified, target-binding aptamer on the surface of a gold electrode, followed by backfilling with an alkanethiol to form a self-assembled monolayer. And while the majority of previously described EAB sensors have employed hydroxyl-terminated monolayers, a handful of studies have shown that altering the monolayer headgroup can strongly affect sensor performance.

View Article and Find Full Text PDF

This study investigates the influence of environmental factors on the secondary metabolites of Stachyslavandulifolia Vahl., focusing on how soil properties, temperature, and precipitation affect the yield and chemical composition of its essential oils. The research was conducted in two domains within three rangelands in Mazandaran province, Iran.

View Article and Find Full Text PDF

Tryptophan mannosylation, the covalent addition of an α-ᴅ-mannose sugar to a tryptophan side chain, is a post-translational modification (PTM) that can affect protein stability, folding, and interactions. Compared to other forms of protein glycosylation, it is relatively uncommon but is affected by conformational anomalies and modeling errors similar to those seen in N- and O-glycans in the Protein Data Bank (PDB). In this work, we report methods for detecting, building, and improving mannose structures linked to tryptophans.

View Article and Find Full Text PDF

Stable Soil Biota Network Enhances Soil Multifunctionality in Agroecosystems.

Glob Chang Biol

January 2025

Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.

Unraveling how agricultural management practices affect soil biota network complexity and stability and how these changes relate to soil processes and functions is critical for the development of sustainable agriculture. However, our understanding of these knowledge still remains unclear. Here, we explored the effects of soil management intensity on soil biota network complexity, stability, and soil multifunctionality, as well as the relationships among these factors.

View Article and Find Full Text PDF

Purpose: The medial collateral ligament (MCL), and posterior oblique ligament (POL) are the primary valgus stabilisers of the knee, and clinical examinations in grading valgus instability can be inherently subjective. Stress radiography of medial-sided knee injuries provides objective diagnosis and was analysed in this study. We hypothesised that (1) medial joint space opening would increase cutting the superficial MCL (sMCL), POL and anterior cruciate ligament (ACL); (2) isolated deep MCL (dMCL) injury would not increase medial joint space opening; (3) medial joint space opening would increase at higher flexion angles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!