Pesticides like malathion have the potential to disrupt development and reproduction of aquatic organisms including fishes. To investigate the likely consequences of malathion exposure at low doses in juvenile catfish, Clarias batrachus, we studied the expression pattern of genes encoding certain transcription factors, activin A, sex steroid or orphan nuclear receptors and steroidogenic enzymes which are known to be involved in gonadal development along with histological changes. To compare further, we also analyzed certain brain specific genes related to gonadal axis. Fifty days post hatch catfish fingerlings were exposed continuously to 1 and 10 µg/L of malathion for 21 days. Results from these experiments indicated that transcript levels of various genes were altered by the treatments, which may further affect the gonadal development either directly or indirectly through brain. Histological analysis revealed slow progression of spermatogenesis in testis, while in ovary, the oil droplet oocytes were found to be higher after treatment (10 µg/L). Our findings revealed that the exposure of malathion, even at low doses, hinder or modulate early gonadal development differentially by targeting gene expression pattern of transcription factors, activin A, sex steroid or orphan nuclear receptors and steroidogenic enzymes with an evidence on histological changes. Further, some of the genes showed differential expression at the level of brain in male and female sex after the exposure of malathion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2013.12.029 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!