Age-dependent amplitude variation of brain-stem auditory evoked potentials.

Electroencephalogr Clin Neurophysiol

Department of Neurophysiology, Institute of Neurology and Psychiatry, Bucharest, Rumania.

Published: February 1988

Normative amplitude values of brain-stem auditory evoked potential (BAEP) components are given for normally hearing subjects at 1, 10, 30, 50 and 70 years of age, with an intragroup age variation of only +/- 6 months. Under these circumstances amplitude standard deviations decreased to less than 20% of the mean values. In contrast with the reduced evolution of latency with age, BAEP amplitude (for components I-V) undergoes a greater oscillation during ontogeny. With the exception of component I, it increased markedly from 1 year to 10 years of age and decreased thereafter constantly up to 50 years, with a mean rate of 10 nV yearly. The decrease slowed down between 50 and 70 years. The amplitude differences between the subgroups are highly significant statistically (P less than 0.01). Possible reasons for these changes are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0168-5597(88)90016-0DOI Listing

Publication Analysis

Top Keywords

brain-stem auditory
8
auditory evoked
8
years age
8
age-dependent amplitude
4
amplitude variation
4
variation brain-stem
4
evoked potentials
4
potentials normative
4
amplitude
4
normative amplitude
4

Similar Publications

Functional and Structural Changes in the Inner Ear and Cochlear Hair Cell Loss Induced by Hypergravity.

Int J Mol Sci

January 2025

Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Inha University, Incheon 22332, Republic of Korea.

Gravitational changes have been shown to cause significant abnormalities in various body systems, including the cardiovascular, immune, vestibular, and musculoskeletal systems. While numerous studies have examined the response of the vestibular system to gravitational stimulation, research on functional changes in the peripheral inner ear remains limited. The inner ear comprises two closely related structures: the vestibule and cochlea.

View Article and Find Full Text PDF

The sense of hearing originates in the cochlea, which detects sounds across dynamic sensory environments. Like other peripheral organs, the cochlea is subjected to environmental insults, including loud, damage-inducing sounds. In response to internal and external stimuli, the central nervous system directly modulates cochlear function through olivocochlear neurons (OCNs), which are located in the brainstem and innervate the cochlear sensory epithelium.

View Article and Find Full Text PDF

Normative Values of Brainstem Auditory-Evoked Responses in Sheep.

Brain Sci

January 2025

Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland.

The brainstem auditory-evoked response (BAER) is an established electrophysiological measure of neural activity from the auditory nerve up to the brain stem. The BAER is used to diagnose abnormalities in auditory pathways and in neurophysiological human and animal research. However, normative data for BAERs in sheep, which represent an adequate large animal model for translational and basic otological research, are lacking.

View Article and Find Full Text PDF

Audiovisual information reaches the brain via both sustained and transient input channels, representing signals' intensity over time or changes thereof, respectively. To date, it is unclear to what extent transient and sustained input channels contribute to the combined percept obtained through multisensory integration. Based on the results of two novel psychophysical experiments, here we demonstrate the importance of the transient (instead of the sustained) channel for the integration of audiovisual signals.

View Article and Find Full Text PDF

A Neuron-Like Cellular Model for Severe Tinnitus Associated with Rare Variations in the ANK2 Gene.

Mol Neurobiol

January 2025

Otology & Neurotology Group CTS495, Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, Ibs.GRANADA, Granada, Universidad de Granada, Granada, Spain.

Tinnitus is the perception of sound without an external source, often associated with changes in the auditory pathway and different brain regions. Recent research revealed an overload of missense variants in the ANK2 gene in individuals with severe tinnitus. ANK2, encoding ankyrin-B, regulates axon branching and inhibits microtubule invasion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!