Headspace solid-phase microextraction coupled to gas chromatography for the analysis of aldehydes in edible oils.

Talanta

State Key Laboratory of Marine Environmental Science & College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China. Electronic address:

Published: March 2014

Oxidation has important effects on the quality of edible oils. In particular, the generation of aldehydes produced by the oxidation of oils is one of the deteriorative factors to their quality. The aim of this study was to develop a method to determine the aldehydes as lipid oxidation markers in edible oils. Seven aldehydes generated from lipid oxidation were studied using headspace solid-phase microextraction coupled to gas chromatography with a flame ionization detector. The extraction efficiency of five commercial fibers was investigated and the influence of extraction temperature, extraction time, desorption temperature, and desorption time were optimized. The best result was obtained with 85 μm carboxen/polydimethylsiloxane, extraction at 50 °C for 15 min and desorption in the gas chromatography injector at 250 °C for 2 min. Under the optimized conditions, the content of hexanal was the highest of the seven aldehydes in all edible oils. The limits of detection for hexanal in the three oils were found to range from 4.6 to 10.2 ng L(-1). The reproducibility of the method was evaluated and the relative standard deviations were less than 8.9%. This developed approach was successfully applied to analyze hexanal in peanut oil, soy oil, and olive oil samples, and these results were compared with those obtained using the thiobarbituric acid-reactive substances (TBARs) method.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2013.11.021DOI Listing

Publication Analysis

Top Keywords

edible oils
16
gas chromatography
12
headspace solid-phase
8
solid-phase microextraction
8
microextraction coupled
8
coupled gas
8
aldehydes edible
8
lipid oxidation
8
°c min
8
oils
6

Similar Publications

Food commodities, including mycotoxins naturally produced from toxigenic fungi (pre- or post-harvest), are particularly vulnerable to contamination. The study intended to use unique bioactive composites loaded with antimicrobial constituents for food packaging. Three composite types are based on carboxymethyl cellulose/shellac (CMC/SH) and loaded with pomegranate extract (POE) with or without jojoba oil (JOE) at various concentrations.

View Article and Find Full Text PDF

Water-based green deep eutectic solvent: Application in liquid-liquid microextraction of trace bisphenol A in edible oils.

Talanta

December 2024

State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi, 030001, People's Republic of China. Electronic address:

In this study, tetrabutylammonium chloride (TBAC), tetrabutylammonium bromide (TBAB), and choline chloride (ChCl) were innovatively applied in the liquid-liquid microextraction (LLME) of bisphenol A (BPA) from edible oil by forming water-based deep eutectic solvent (WDES). The presence of water is not only used in the synthesis of WDES, but also modulates the viscosity of DES and improve its diffusion and mass transfer properties. Several crucial parameters affecting the extraction efficiency were examined, including the type and amount of WDES and the extraction time.

View Article and Find Full Text PDF

Chemical characterization and classification of vegetable oils using DESI-MS coupled with a neural network.

Food Chem

December 2024

Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China; Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China. Electronic address:

This study tackled mislabeling fraud in vegetable oils, driven by price disparities and profit motives, by developing an approach combining desorption electrospray ionization mass spectrometry (DESI-MS) with a shallow convolutional neural network (SCNN). The method was designed to characterize lipids and distinguish between nine vegetable oils: corn, soybean, peanut, sesame, rice bran, sunflower, camellia, olive, and walnut oils. The optimized DESI-MS method enhanced the ionization of non-polar glycerides and detected ion adducts like [TG + Na], [TG + NH].

View Article and Find Full Text PDF

Foeniculum vulgare Miller bracts, revalorization of a local food waste.

Sci Rep

December 2024

Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, 84084, Salerno, Italy.

Article Synopsis
  • The research investigates the potential of using fennel by-products from Southern Italy by analyzing their chemical properties and health benefits.
  • The study identifies useful compounds in the extracts, like flavonoids and essential amino acids, and highlights trans-anethole and limonene as key components in essential oils.
  • Results show that while the hydroalcoholic extracts have moderate antioxidant activity, the essential oils exhibit antimicrobial properties against several common bacteria, suggesting that fennel waste can be a valuable resource.
View Article and Find Full Text PDF

In the past decade, there has been an emerging gap between the demand and supply of vegetable oils globally for both edible and industrial use. Lipids are important biomolecules with enormous applications in the industrial sector and a major source of energy for animals and plants. Hence, to elevate the lipid content through metabolic engineering, new strategies have come up for triacylglycerol (TAG) accumulation and in raising the lipid or oil yield in crop plants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!