Background: Fundamental cytological changes of amyotrophic lateral sclerosis (ALS) were looked for by comparing relatively preserved Onuf's nucleus (ON) and severely affected neighboring motor neuron groups (dorsolateral alpha motoneurons (DL) and other anterior horn neurons (OAH)). The second sacral segments from 11 ALS patients and 5 controls were initially quadruple-labeled for phosphorylated and non-phosphorylated TAR DNA-binding protein of 43 kDa (TDP43), and p62 with DAPI to identify TDP43-related changes. After digital recording of these fluorescence data encompassing the entire specimen at a high resolution, the same sections were stained with Klüver-Barrera method to obtain their exact bright-field counterparts. This novel approach facilitated exact identification of ON. Furthermore, this cell to cell comparison enabled to correlate quantitative indices of the neuronal cell bodies: perimeter, area and circularity index (CI) i.e. the ratio of (perimeter/2π) divided by the square root of (area/π), which decreases with dendritic retraction, overall number of neurons and inclusions.

Results: In addition to known preservation of ON neuron number relative to DL and OAH, size reduction of ON neurons was not significant even in the advanced stage. Significant size reduction in DL was counteracted in the presence of TDP43-positive inclusions. Early increase of neuronal size in OAH was further enhanced by the presence of TDP43-positive inclusions. Even with these heterogeneous cytopathological changes, a decrease in CI was consistent in all groups at an early phase and was correlated with neuronal loss.

Conclusions: Among variable cytological changes of ALS, a decrease in CI is a consistent early feature shared between non-atrophic ON neurons and other anterior horn neurons with either decreased (DL) or even increased (OAH) size and profounder neuronal loss. This decrease in CI, representative of dendritic retraction, is fundamental to ALS pathogenesis, not necessarily linked to cell size and pathological inclusions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3922781PMC
http://dx.doi.org/10.1186/2051-5960-2-11DOI Listing

Publication Analysis

Top Keywords

dendritic retraction
12
amyotrophic lateral
8
cytological changes
8
anterior horn
8
horn neurons
8
oah size
8
size reduction
8
presence tdp43-positive
8
tdp43-positive inclusions
8
decrease consistent
8

Similar Publications

It is well known that activation of NMDA receptors can trigger long-term synaptic depression (LTD) and that a morphological correlate of this functional plasticity is spine retraction and elimination. Recent studies have led to the surprising conclusion that NMDA-induced spine shrinkage proceeds independently of ion flux and requires the initiation of protein synthesis, highlighting an unappreciated contribution of mRNA translation to non-ionotropic NMDAR signaling. Here we used NMDA-induced spine shrinkage in slices of mouse hippocampus as a readout to investigate this novel modality of synaptic transmission.

View Article and Find Full Text PDF

Dendritic pathology and overexpression of MAP2 in Purkinje cells from mice inoculated with rabies virus.

J Mol Histol

December 2024

Grupo de Morfología Celular, Instituto Nacional de Salud (INS), Av. Calle 26 No. 51-20, Bogotá, DC, 111321, Colombia.

The effect of rabies virus infection on dendritic morphology and on the expression of the MAP2 protein in Purkinje cells in the cerebellum of mice was studied. ICR mice were inoculated with rabies virus, and six days later, the mice were sacrificed, the cerebellum was removed and processed for Golgi-Cox staining or MAP2 immunohistochemistry. Infection with rabies virus altered the dendritic pattern of Purkinje cells ranged from moderate changes to accentuated retraction in the dendritic tree of some Purkinje cells.

View Article and Find Full Text PDF

Adaptive immunity relies on dendritic cell (DC) migration to transport antigens from tissues to lymph nodes. Galectins, a family of β-galactoside-binding proteins, control cell membrane organisation, exerting crucial roles in multiple physiological processes. Here, we report a novel mechanism underlying cell polarity and uropod retraction.

View Article and Find Full Text PDF

Obese male zucker rats show basilar dendritic retraction in the medial prefrontal cortex.

Heliyon

November 2024

Laboratorio de Neurofisiología Experimental, Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, Edificio BIO1, Ciudad Universitaria, CP 72570, Puebla, Puebla, Mexico.

Obesity, a prevalent disorder, predisposes individuals to metabolic syndrome, type 2 diabetes mellitus, and high blood pressure. Obesity has been investigated in various organisms that display genetic, high-fat, and high-carbohydrate diet (HFCD)-induced obesity. Recent studies have found that both male and female Zucker rats, which are genetically obese, exhibit alterations in dendritic arborization of neurons in certain structures of the central nervous system.

View Article and Find Full Text PDF

Alzheimer's disease (AD), characterized by cognitive decline, is increasingly recognized as a disorder marked by synaptic loss and dysfunction. Despite this understanding, the underlying pathophysiological mechanisms contributing to synaptic impairment remain largely unknown. In this study, we elucidate a previously undiscovered signaling pathway wherein the S-nitrosylation of the Cdk5 activator p39, a post-translational modification involving the addition of nitric oxide to protein cysteine residues, plays a crucial role in synaptic dysfunction associated with AD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!