Infochemicals released by Daphnia magna fed on Microcystis aeruginosa affect mcyA gene expression.

Toxicon

Laboratorio de Hidrobiología Experimental, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. Carpio esq. Plan de Ayala s/n, Col. Sto. Tomás, Mexico, D.F. 11340, Mexico. Electronic address:

Published: March 2014

Microcystins (MCs) are toxic heptapeptides produced by cyanobacteria during blooms that are noxious to diverse organisms, from bacteria to vertebrates. Specifically in daphnids, they cause reduced growth, a low reproductive rate, and, in extreme cases, death; however, different infochemicals released by cladocerans stimulate MCs synthesis. Ecological cyanobacteria-daphnids interactions are complex and not clear yet. In this study, we evaluated the effects of infochemicals released by Daphnia magna neonates and adults fed with different concentrations of Microcystis aeruginosa on population growth of strains Ch10 and UTEX LB2385 of M. aeruginosa, mcyA gene expression in real time qPCR, and the intracellular concentration of MCs. In addition, we assessed the relation between the cellular diameter and the intracellular concentration of MCs in both strains. Chlorophyll content per cell was affected by the presence of infochemicals from D. magna neonates and adults. mcyA gene was significantly overexpressed in the early stages of population growth (5 days) in all treatments with strain UTEX LB2385, whereas overexpression was observed in strain Ch10 at the end stage of the exponential and stationary phases (10 and 15 days). Intracellular concentration of MCs varied with the tested factor. Results suggest that the increase in mcyA gene expression and in MCs production could be defense mechanisms against the consumption by D. magna. Results also demonstrate the physiological plasticity among Microcystis strains, which could explain the permanence and dominance of this genus in toxic blooms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.toxicon.2014.01.008DOI Listing

Publication Analysis

Top Keywords

mcya gene
16
infochemicals released
12
gene expression
12
intracellular concentration
12
concentration mcs
12
released daphnia
8
daphnia magna
8
microcystis aeruginosa
8
magna neonates
8
neonates adults
8

Similar Publications

2,6-Dichloro-1,4-benzoquinone (2,6-DCBQ) is an emerging chlorinated disinfection byproduct (DBP) in bodies of water. However, this compound poses an unknown toxic effect on cyanobacteria. In this study, the toxicological mechanisms of 2,6-DCBQ in () were investigated through physiological and nontargeted metabolomic assessments.

View Article and Find Full Text PDF

Toxigenic cyanobacteria and microcystins in the oligotrophic pelagic zone and mesotrophic bay of Lake Onego-the second largest lake in Europe-were found for the first time. Microscopic analysis revealed that and dominated in bloom spots in the oligotrophic zone of the lake and and OKin the eutrophic bay. The abundance of cyanobacteria in bloom spots is potentially hazardous for humans and animals.

View Article and Find Full Text PDF

Cyanobacteria are cosmopolitan organisms; nonetheless, climate change and eutrophication are increasing the occurrence of cyanobacteria blooms (cyanoblooms), thereby raising the risk of cyanotoxins in water sources used for drinking, agriculture, and livestock. This study aimed to determine the presence of cyanobacteria, including toxigenic cyanobacteria and the occurrence of cyanotoxins in the El Pañe reservoir located in the high-Andean region, Arequipa, Peru, to support water quality management. The study included morphological observation of cyanobacteria, molecular determination of cyanobacteria (16S rRNA analysis), and analysis of cyanotoxins encoding genes ( for microcystins, for cylindrospermopsins, for saxitoxins, and for anatoxins).

View Article and Find Full Text PDF

Mechanistic study on the increase of Microcystin-LR synthesis and release in Microcystis aeruginosa by amino-modified nano-plastics.

J Hazard Mater

August 2024

Institute of Environmental Processes and Pollution Control, Jiangnan University, Wuxi 214122, PR China; School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China.

Ecological risk of micro/nano-plastics (MPs/NPs) has become an important environmental issue. Microcystin-leucine-arginine (MC-LR) produced by Microcystis aeruginosa (M. aeruginosa) is the most common and toxic secondary metabolites (SM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!