CYP94B3 activity against jasmonic acid amino acid conjugates and the elucidation of 12-O-β-glucopyranosyl-jasmonoyl-L-isoleucine as an additional metabolite.

Phytochemistry

Laboratory of Bioorganic Chemistry, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan. Electronic address:

Published: March 2014

AI Article Synopsis

  • The hormonal action of jasmonate in plants is regulated by its production and breakdown, with cytochrome P450s CYP94B3 and CYP94C1 playing key roles in its inactivation.
  • CYP94B3 not only helps in the inactivation of jasmonoyl-L-isoleucine but also catalyzes the hydroxylation of other jasmonoyl amino acids, leading to less active metabolites that accumulate after plant wounding.
  • The study also identifies 12-O-β-glucopyranosyl-jasmonoyl-L-isoleucine as a new metabolite related to jasmonoyl-L-isoleucine, which rises in concentration following plant damage.

Article Abstract

The hormonal action of jasmonate in plants is controlled by the precise balance between its biosynthesis and inactivation. Oxidation of jasmonoyl-L-isoleucine at the C-12 position, which is catalyzed by cytochrome P450s CYP94B3 and CYP94C1, is thought to be one of the main inactivation pathways. In this study, an additional function of CYP94B3 was elucidated, as well additional jasmonoyl-L-isoleucine metabolites being investigated. It was found that CYP94B3 also catalyzes the hydroxylation of jasmonoyl-L-valine and jasmonoyl-L-phenylalanine, and that these hydroxyl compounds accumulated after wounding and possessed lower activity than non-hydroxylated compounds. Additionally, 12-O-β-glucopyranosyl-jasmonoyl-L-isoleucine accumulated after wounding, suggesting that it is a metabolite of jasmonoyl-L-isoleucine.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phytochem.2013.12.019DOI Listing

Publication Analysis

Top Keywords

accumulated wounding
8
cyp94b3
4
cyp94b3 activity
4
activity jasmonic
4
jasmonic acid
4
acid amino
4
amino acid
4
acid conjugates
4
conjugates elucidation
4
elucidation 12-o-β-glucopyranosyl-jasmonoyl-l-isoleucine
4

Similar Publications

Post-traumatic osteoarthritis (PTOA) is a painful joint disease characterized by the degradation of bone, cartilage, and other connective tissues in the joint. PTOA is initiated by trauma to joint-stabilizing tissues, such as the anterior cruciate ligament, medial meniscus, or by intra-articular fractures. In humans, ~50% of joint injuries progress to PTOA, while the rest spontaneously resolve.

View Article and Find Full Text PDF

The Management of Bone Defects in Rett Syndrome.

Calcif Tissue Int

January 2025

Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy.

Rett syndrome (RS) is a rare neurodevelopmental disorder primarily caused by mutations in the X-linked methyl-CpG binding protein 2 (MECP2) gene, responsible for encoding MECP2 which plays a pivotal role in regulating gene expression. The neurological and non-neurological manifestations of RS vary widely in severity depending on the specific mutation type. Bone complications, mostly scoliosis but also osteoporosis, hip displacement, and a high rate of fractures, are among the most prevalent non-neurological comorbidities observed in girls with RS.

View Article and Find Full Text PDF

Mifepristone achieves tumor suppression and ferroptosis through PR/p53/HO1/GPX4 axis in meningioma cells.

J Neurooncol

January 2025

National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.

Purpose: This study explores the effects of mifepristone on the proliferation, motility, and invasion of malignant and benign meningioma cells, aiming to identify mifepristone-sensitive types and investigate the underlying molecular mechanisms.

Methods: IOMM-Lee and HBL-52 meningioma cells were treated with 0, vehicle control (VC), 5, 10, 20, 40, and 80 μM of mifepristone for 12, 24, 48, 72, and 96 h. Proliferation was assessed via CCK8 assay, while motility and invasion were measured using wound scratch and transwell assays.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

VA Boston Healthcare System, Boston, MA, USA.

Background: T-cell infiltration into the brain parenchyma is associated with hyperphosphorylated tau (p-tau) accumulation in neurodegenerative diseases. Chronic traumatic encephalopathy (CTE) is a progressive tauopathy caused by exposure to repetitive head impacts (RHI). CTE is defined by the perivascular accumulation of p-tau at the cortical sulcal depths and can be stratified into mild and severe pathological stages.

View Article and Find Full Text PDF

Background: This study was to elucidate the impact of blast-induced neurotrauma (BINT) on phosphoproteome networks and cognition in a genetically heterogeneous population of mice (rTg4510) with the human tau P301L mutation linked to Alzheimer's disease-related dementia (ADRD) including frontotemporal dementia.

Method: Mild traumatic brain injury was induced in rTg4510 mice exposed to a single low-density blast (LIB) at an upright position. After assessment of cognitive function by the automated-Home Cage Monitoring (aHCM) system, frontal cortex tissue was collected at 40 days post-injury.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!