Myocardial arterial spin labeling perfusion imaging with improved sensitivity.

J Cardiovasc Magn Reson

Department of Physics and Astronomy, University of Southern California, 3740 McClintock Ave, EEB 400, Los Angeles, CA 90089-2564, USA.

Published: January 2014

Background: Myocardial arterial spin labeling (ASL) is a noninvasive MRI based technique that is capable of measuring myocardial blood flow (MBF) in humans. It suffers from poor sensitivity to MBF due to high physiological noise (PN). This study aims to determine if the sensitivity of myocardial ASL to MBF can be improved by reducing image acquisition time, via parallel imaging.

Methods: Myocardial ASL scans were performed in 7 healthy subjects at rest using flow-sensitive alternating inversion recovery (FAIR) tagging and balanced steady state free precession (SSFP) imaging. Sensitivity encoding (SENSE) with a reduction factor of 2 was used to shorten each image acquisition from roughly 300 ms per heartbeat to roughly 150 ms per heartbeat. A paired Student's t-test was performed to compare measurements of myocardial blood flow (MBF) and physiological noise (PN) from the reference and accelerated methods.

Results: The measured PN (mean ± standard deviation) was 0.20 ± 0.08 ml/g/min for the reference method and 0.08 ± 0.05 ml/g/min for the accelerated method, corresponding to a 60% reduction. PN measured from the accelerated method was found to be significantly lower than that of the reference method (p=0.0059). There was no significant difference between MBF measured from the accelerated and reference ASL methods (p=0.7297).

Conclusions: In this study, significant PN reduction was achieved by shortening the acquisition window using parallel imaging with no significant impact on the measured MBF. This indicates an improvement in sensitivity to MBF and may also enable the imaging of subjects with higher heart rates and imaging during systole.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3913326PMC
http://dx.doi.org/10.1186/1532-429X-16-15DOI Listing

Publication Analysis

Top Keywords

myocardial arterial
8
arterial spin
8
spin labeling
8
myocardial blood
8
blood flow
8
flow mbf
8
sensitivity mbf
8
physiological noise
8
myocardial asl
8
image acquisition
8

Similar Publications

Objective: This study aims to evaluate the relationship between apolipoproteins (ApoA1, ApoB, and the ApoB/A1 ratio) and the incidence of major adverse cardiovascular events (MACE) in patients with coronary artery disease (CAD) and impaired kidney function, assessing their potential role in secondary prevention.

Method: A prospective cohort of 1,640 patients with impaired kidney function who underwent percutaneous coronary intervention in China was analyzed. Patients were categorized based on the measurements of ApoA1, ApoB, and ApoB/A1 ratio.

View Article and Find Full Text PDF

Purpose: Cardiomyocyte death is a major cytopathologic response in acute myocardial infarction (AMI) and involves complex inflammatory interactions. Although existing reports indicating that mixed lineage kinase domain-like protein (MLKL) is involved in macrophage necroptosis and inflammasome activation, the downstream mechanism of MLKL in necroptosis remain poorly characterized in AMI.

Methods: MLKL knockout mice (MLKL), RIPK3 knockout mice (RIPK3), and macrophage-specific MLKL conditional knockout mice (MLKL) were established.

View Article and Find Full Text PDF

Background & Aim: The definition and clinical relevance of percutaneous coronary intervention (PCI)-related myocardial infarction (MI) has been a topic of significant debate and controversy. It has particularly garnered widespread attention recently due to a contemporary trend of including it as a component of primary end points in major trials. The study aimed to assess the clinical relevance of PCI-related MI (PMI) according to the Fourth Universal Definition of MI using a high-sensitivity troponin (hs-Tn) assay in a real-world setting.

View Article and Find Full Text PDF

Implications of a new clinical classification of acute myocardial infarction.

Eur Heart J Acute Cardiovasc Care

January 2025

BHF/University Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK.

Aim: The diagnostic criteria for type 2 myocardial infarction identify a heterogenous group of patients with variable outcomes and no clear treatment implications. We aimed to determine the implications of a new clinical classification for myocardial infarction with more objective diagnostic criteria using cardiac imaging.

Methods: In a prospective cohort study, patients with type 2 myocardial infarction underwent coronary angiography and cardiac magnetic resonance imaging or echocardiography.

View Article and Find Full Text PDF

Aims: To identify differences in CT-derived perivascular (PVAT) and epicardial adipose tissue (EAT) characteristics that may indicate inflammatory status differences between post-treatment acute myocardial infarction (AMI) and stable coronary artery disease (CAD) patients.

Methods And Results: A cohort of 205 post-AMI patients (age 59.8±9.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!