Shedding of organs by abscission is a key terminal step in plant development and stress responses. Cell wall (CW) loosening at the abscission zone can occur through a combination chain breakage of apoplastic polysaccharides and tension release of cellulose microfibrils. Two distinctly regulated abscission cleavage events are amenable to study in small water ferns of the genus Azolla; one is a rapid abscission induced by environmental stimuli such as heat or chemicals, and the other is an ethylene-induced process occurring more slowly through the action of hydrolytic enzymes. Although free radicals are suggested to be involved in the induction of rapid root abscission, its mechanism is not fully understood. The apoplast contains peroxidases, metal-binding proteins and phenolic compounds that potentially generate free radicals from H2O2 to cleave polysaccharides in the CW and middle lamella. Effects of various thiol-reactive agents implicate the action of apoplastic peroxidases having accessible cysteine thiols in rapid abscission. The Ca(2+) dependency of rapid abscission may reflect the stabilization Ca(2+) confers to peroxidase structure and binding to pectin. To spur further investigation, we present a hypothetical model for small signaling molecules H2O2 and NO and their derivatives in regulating, via modification of putative protein thiols, free radical attack of apoplastic polysaccharides.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3929055 | PMC |
http://dx.doi.org/10.1016/j.plantsci.2013.12.008 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!