Generation 5 (G5) poly(amidoamine) dendrimers with acetyl (G5.NHAc), glycidol hydroxyl (G5.NGlyOH), and succinamic acid (G5.SAH) terminal groups were used to physically encapsulate an anticancer drug doxorubicin (DOX). Both UV-vis spectroscopy and multiple NMR techniques including one-dimensional NMR and two-dimensional NMR were applied to investigate the interactions between different dendrimers and DOX. The influence of the surface functional groups of G5 dendrimers on the DOX encapsulation, release kinetics, and cancer cell inhibition effect was investigated. We show that all three types of dendrimers are able to effectively encapsulate DOX and display therapeutic inhibition effect to cancer cells, which is solely associated with the loaded DOX. The relatively stronger interactions of G5.NHAc or G5.NGlyOH dendrimers with DOX than that of G5.SAH dendrimers with DOX demonstrated by NMR techniques correlate well with the slow release rate of DOX from G5.NHAc/DOX or G5.NGlyOH/DOX complexes. In contrast, the demonstrated weak interaction between G5.SAH and DOX causes a fast release of DOX, suggesting that the G5.SAH/DOX complex may not be a proper option for further in vivo research. Our findings suggest that the dendrimer surface functional groups are crucial for further design of multifunctional dendrimer-based drug delivery systems for various biomedical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp411669k | DOI Listing |
Pharmaceutics
November 2024
Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca CP 62209, Mexico.
Doxorubicin (Dox) is an anticancer drug used in the treatment of a wide range of solid tumors; however, Dox causes systemic toxicity and irreversible cardiotoxicity. The design of a new nanosystem that allows for the control of Dox loading and delivery results is a powerful tool to control Dox release only in cancer cells. For this reason, supramolecular self-assembly was performed between a poly(amidoamine) (PAMAM) dendrimer decorated with four β-cyclodextrin (βCD) units (PAMAM-βCD) and an adamantane-hydrazone-doxorubicin (Ad-h-Dox) prodrug.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Research Laboratory of Dendrimers and Nanopolymers, Faculty of Chemistry, University of Tabriz, P.O. Box 51666, Tabriz, Iran.
Hydrogels are adaptable substances with a 3D framework able to hold large quantities of water, which is why they are ideal for use in the field of biomedicine. This research project focused on creating a new hydrogel combining carboxymethyl chitosan (CMCS), graphene quantum dots (GQDs), pectin (Pe), and MIL-88 for precise and controlled release of the cancer drug doxorubicin (DOX). The creation of CMCS/GQDs@Pe/MIL-88 hydrogel beads was achieved through an eco-friendly one-step synthesis method.
View Article and Find Full Text PDFAdv Pharm Bull
October 2024
Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
Purpose: We report on the design of hypoxia-induced dual-stage acting dendrimeric nanoparticles (NPs) for selective delivery of two chemotherapeutic model drugs doxorubicin (DOX) and tirapazamin (TPZ) for deepened drug delivery into hypoxic tumors .
Methods: PAMAM G5 dendrimers were crosslinked with a hypoxic azo linker, attached to a mPEG to form a detachable corona on the dendrimer surface (PAP NPs). NPs were characterized by Zeta sizer, transmission electron microscope (TEM), Fourier transforms infrared (FTIR) and drug release kinetics.
Nanomaterials (Basel)
October 2024
MOE Key Laboratory of High Performance Polymer Materials and Technology, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China.
Autophagy leads to cellular tolerance of the therapeutic pressure of chemotherapeutic drugs, resulting in treatment resistance. Therefore, the effective monitoring of the autophagy status of tumors in vivo and the regulating of the autophagy level are crucial for improving the efficacy of chemotherapy. In this work, we grafted nitroxide radicals onto the surface of iron oxide nanoparticles (FeO NPs) using dendrimer polymers, yielding FeO-NO· NPs that are responsive to reactive oxygen species (ROS) and possess enhanced T1 and T2 signal capabilities in a magnetic resonance imaging (MRI) measurement.
View Article and Find Full Text PDFMol Pharm
November 2024
Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Krakow 30-239, Poland.
The work presents correlations between the physicochemical properties of the carrier and the active substance and optimization of the conditions for creating an active system based on PAMAM dendrimers and doxorubicin. The study monitored the influence of the ionized form of the doxorubicin molecule on the efficiency of complex formation. The deprotonated form of doxorubicin occurs under basic conditions in the pH range of 9.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!