Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Pseudomonas aeruginosa azurin has been an important model system for investigating fundamental electron transfer (EleT) in proteins. Early pioneering studies used ruthenium photosensitizers to induce EleT in azurin and this experimental data continues to be used to develop theories for EleT mediated through a protein matrix. In this study we show that putative EleT rates in the P. aeruginosa azurin model system, measured via photoinduced methods, can also be explained by an alternate energy transfer (EngT) mechanism. Investigation of EngT in azurin, conducted in this study, isolates and resolves confounding phenomena--i.e., zinc contamination and excited state emission--that can lead to erroneous kinetic assignments. Here we employ two azurin photosensitizer systems, the previously reported Ru(2,2'-bipyridine)2(imidazole) and an unreported phototrigger, Ru(bpy)2(phen-IA), Ru(2,2'-bipyridine)2(5-iodoacetamido-1,10-phenanthroline), that has a longer lifetime, to better resolve convoluted kinetic observations and allow us to draw clear distinctions between photoinduced EngT and EleT. Extensive metal analysis, in addition to electrochemical and photochemical (photoinduced transfer) measurements, suggests Zn-metalated azurin contamination can result in a biexponential reaction, which can be mistaken for EleT. Namely, upon photoinduction, the observed slow phase is exclusively the contribution from Zn-metalated azurin, not EleT, whereas the fast phase is the result of EngT between the photosensitizer and the Cu-site, rather than simple excited-state decay of the phototrigger.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja412308r | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!