The aim of the study was to determine the antiangiogenic efficacy of vatalanib, sunitinib, and AMD3100 in an animal model of human glioblastoma (GBM) by using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and tumor protein expression analysis. Orthotopic GBM-bearing animals were randomly assigned either to control group or vatalanib, sunitinib, and AMD3100 treatment groups. Following 2 weeks of drug treatment, tumor growth and vascular parameters were measured using DCE-MRI. Expression of different angiogenic factors in tumor extracts was measured using a membrane-based human antibody array kit. Tumor angiogenesis and invasion were determined by immunohistochemistry. DCE-MRI showed a significant increase in tumor size after vatalanib treatment. AMD3100-treated group showed a significant decrease in a number of vascular parameters determined by DCE-MRI. AMD3100 significantly decreased the expression of different angiogenic factors compared to sunitinib or vatalanib; however, there were no significant changes in vascular density among the groups. Sunitinib-treated animals showed significantly higher migration of the invasive cells, whereas in both vatalanib- and AMD3100-treated animals the invasive cell migration distance was significantly lower compared to that of control. Vatalanib and sunitinib resulted in suboptimal therapeutic effect, but AMD3100 treatment resulted in a significant reduction in tumor growth, permeability, interstitial space volume, and invasion of tumor cells in an animal model of GBM.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3890700 | PMC |
http://dx.doi.org/10.1593/tlo.13559 | DOI Listing |
Mol Biol Rep
January 2025
Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
Introduction: Hematologic malignancies, originating from uncontrolled growth of hematopoietic and lymphoid tissues, constitute 6.5% of all cancers worldwide. Various risk factors including genetic disorders and single nucleotide polymorphisms play a role in the pathogenesis of hematologic malignancies.
View Article and Find Full Text PDFCancer Commun (Lond)
January 2025
Department of Medical Oncology, Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, P. R. China.
Background: The standard first-line treatment for human epidermal growth factor receptor 2 (HER2)-positive recurrent/metastatic breast cancer currently includes pertuzumab plus trastuzumab and docetaxel. This study aimed to evaluate the effectiveness of KN026, an anti-HER2 bispecific antibody, plus docetaxel in first-line treatment of HER2-positive recurrent/metastatic breast cancer.
Methods: This open-label, single-arm, phase II study enrolled patients with HER2-positive recurrent/metastatic breast cancer in 19 centers across China from December 30, 2019 to May 27, 2021.
ACS Appl Mater Interfaces
January 2025
State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China.
Radiotherapy (RT) is widely applied in tumor therapy, but inevitable side effects, especially for skin radiation injury, are still a fatal problem and life-threatening challenge for tumor patients. The main components of topical radiation protection preparations currently available on the market are antioxidants, such as SOD, which are limited by their unstable activity and short duration of action, making it difficult to achieve the effects of radiation protection and skin radiation damage treatment. Therefore, we designed a drug-free antioxidant hydrogel patch with encapsulated bioactive epidermal growth factor (EGF) for the treatment of radiation skin injury.
View Article and Find Full Text PDFCell Physiol Biochem
January 2025
UR-UPJV 4667, UFR Sciences, Université de Picardie Jules Verne, Amiens, France,
Quiescent pancreatic stellate cells (PSCs) represent only a very low proportion of the pancreatic tissue, but their activation leads to stroma remodeling and fibrosis associated with pathologies such as chronic pancreatitis and pancreatic ductal adenocarcinoma (PDAC). PSC activation can be induced by various stresses, including acidosis, growth factors (PDGF, TGFβ), hypoxia, high pressure, or intercellular communication with pancreatic cancer cells. Activated PSC targeting represents a promising therapeutic strategy, but little is known regarding the molecular mechanisms underlying the activation of PSCs.
View Article and Find Full Text PDFBackground/aims: Bruise is the extravasation of blood that may be mild or severe. Bone marrow mesenchymal stem cells (BM-MSCs) are one of the most promising cells used in regenerative medicine for treating many disorders. We aimed to evaluate the efficiency of BM-MSCs in treating cutaneous bruises.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!