THE skin secretion of many amphibians contains peptides that are able to kill a broad range of microorganisms (antimicrobial peptides: AMPs) and potentially play a role in innate immune defense. Similar to the toxin arsenals of various animals, amphibian AMP repertoires typically show major structural variation, and previous studies have suggested that this may be the result of diversifying selection in adaptation to a diverse spectrum of pathogens. Here we report on transcriptome analyses that indicate a very different pattern in the dwarf clawed frog H. boettgeri. Our analyses reveal a diverse set of transcripts containing two to six tandem repeats, together encoding 14 distinct peptides. Five of these have recently been identified as AMPs, while three more are shown here to potently inhibit the growth of gram-negative bacteria, including multi-drug resistant strains of the medically important Pseudomonas aeruginosa. Although the number of predicted peptides is similar to the numbers of related AMPs in Xenopus and Silurana frog species, they show significantly lower structural variation. Selection analyses confirm that, in contrast to the AMPs of other amphibians, the H. boettgeri peptides did not evolve under diversifying selection. Instead, the low sequence variation among tandem repeats resulted from purifying selection, recent duplication and/or concerted gene evolution. Our study demonstrates that defense peptide repertoires of closely related taxa, after diverging from each other, may evolve under differential selective regimes, leading to contrasting patterns of structural diversity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3899252 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0086339 | PLOS |
Diagn Microbiol Infect Dis
December 2024
Department of Molecular Epidemiology, National Institute of Malaria Research, Sector-8, Dwarka, Delhi 110077, India. Electronic address:
Microsatellites, or simple sequence repeats (SSRs), are short tandemly repeated DNA sequences widely dispersed throughout the genome. Their high variability, co-dominant inheritance, and ease of detection make them valuable genetic markers, frequently used to study genetic diversity, population structure, and evolutionary processes. In the context of malaria research, particularly with Plasmodium falciparum (P.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Yunnan Key Laboratory of Wood Adhesives and Glue Products, Southwest Forestry University, Kunming 650224, PR China; College of Materials and Chemical Engineering, Southwest Forestry University, Kunming 650224, PR China. Electronic address:
The manufacturing of soy-based adhesives with high bonding strength, excellent water resistance, and exceptional environmental performance still faces difficulties. In this work, using glyoxal-urea (GU) resin, chitosan (CS), and soy protein isolate (SPI) as the primary raw materials in order to effectively mitigate the release of free formaldehyde commonly found in traditional wood-based panels. Obtaining an adhesive with high strength, excellent water resistance, and a stable cross-linking structure of GU/CS/SPI (CS represents different mass fractions of chitosan solution).
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Klong Luang, Pathum Thani 12120, Thailand.
This study presents a new approach for fabricating 3D-printed self-healing hydrogels via light-assisted 3D printing, utilizing Schiff-base and covalent bonding formations resulting from the reaction between amine and aldehyde functional groups alongside the photopolymerization of methacrylate groups. Two distinct polymers, carboxymethyl chitosan (CMCs) and dextran, were first modified to yield methacrylate-modified carboxymethyl chitosan (CMCs-MA) and oxidized dextran (OD). The structural modifications of these polymers were confirmed using spectroscopic techniques, including H NMR and FTIR analyses.
View Article and Find Full Text PDFWorld Neurosurg
December 2024
Department of Neurology, NewYork-Presbyterian Weill Cornell Medicine, New York, New York, USA. Electronic address:
Neurocritical care as a field aims to treat patients who are neurologically critically ill due to a variety of pathologies. As a recently developed subspecialty, the field faces challenges, several of which are outlined in this review. The authors discuss aneurysmal subarachnoid hemorrhage, status epilepticus, and traumatic brain injury as specific disease processes with opportunities for growth in diagnosis, management, and treatment, as well as disorders of consciousness that can arise as a result of many neurological injuries.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Institute for Frontier Materials, Deakin University, Geelong VIC 3216, Australia. Electronic address:
Hypothesis: Optimizing interfacial positioning of crosslinkers within a reactive self-assembled hexagonal lyotropic liquid crystals (HLLC) system could assist in retaining the hexagonal structure during polymerization and thereby improving water filtration performances of the as-synthesized nanofiltration membranes.
Experiments: The positioning of the hydrophilic crosslinker, poly (ethylene glycol) diacrylate (PEGDA), within the reactive HLLC system was systematically investigated using H and C solid nuclear magnetic resonance (NMR) and small angle X-ray scattering (SAXS) techniques. The structural variation and water filtration performances of these HLLC systems with/without crosslinkers after polymerization were further studied using grazing incidence SAXS (GISAXS) and crossflow filtration tests, respectively.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!