The deterioration of sleep in the older population is a prevalent feature that contributes to a decrease in quality of life. Inappropriate entrainment of the circadian clock by light is considered to contribute to the alteration of sleep structure and circadian rhythms in the elderly. The present study investigates the effects of aging on non-visual spectral sensitivity to light and tests the hypothesis that circadian disturbances are related to a decreased light transmittance. In a within-subject design, eight aged and five young subjects were exposed at night to 60 minute monochromatic light stimulations at 9 different wavelengths (420-620 nm). Individual sensitivity spectra were derived from measures of melatonin suppression. Lens density was assessed using a validated psychophysical technique. Although lens transmittance was decreased for short wavelength light in the older participants, melatonin suppression was not reduced. Peak of non-visual sensitivity was, however, shifted to longer wavelengths in the aged participants (494 nm) compared to young (484 nm). Our results indicate that increased lens filtering does not necessarily lead to a decreased non-visual sensitivity to light. The lack of age-related decrease in non-visual sensitivity to light may involve as yet undefined adaptive mechanisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3900444 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0085837 | PLOS |
Int J Biol Macromol
January 2025
College of Engineering and Technology, Northeast Forestry University, Harbin 150040, PR China. Electronic address:
The demand for extended shelf life and food safety in the food industry continues to rise. At the same time, the environmental burden of traditional plastic packaging materials is becoming increasingly serious. Therefore, in this study, an intelligent bilayer film with a pH-sensitive inner indicator film based on Artemisia Sphaerocephala Krasch.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Department of Computer Science, University of Manchester, Manchester M13 9PL, United Kingdom.
The preference for simple explanations, known as the parsimony principle, has long guided the development of scientific theories, hypotheses, and models. Yet recent years have seen a number of successes in employing highly complex models for scientific inquiry (e.g.
View Article and Find Full Text PDFPLoS One
January 2025
Manchester Cancer Research Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.
Non-covalent protein-protein interactions are one of the most fundamental building blocks in cellular signalling pathways. Despite this, they have been historically hard to identify using conventional methods due to their often weak and transient nature. Using genetic code expansion and incorporation of commercially available unnatural amino acids, we have developed a highly accessible method whereby interactions between biotinylated ubiquitin-like protein (UBL) probes and their binding partners can be stabilised using ultraviolet (UV) light-induced crosslinks.
View Article and Find Full Text PDFAnal Chem
January 2025
Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
Microelectrodes offer exceptional sensitivity, rapid response, and versatility, making them ideal for real-time detection and monitoring applications. Photoelectrochemical (PEC) sensors have shown great value in many fields due to their high sensitivity, fast response, and ease of operation. Nevertheless, conventional PEC sensing relies on cumbersome external light sources and bulky electrodes, hindering its miniaturization and implantation, thereby limiting its application in real-time disease monitoring.
View Article and Find Full Text PDFPhysiol Plant
January 2025
College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China.
Cold stress (CS) is a significant natural hazard, and distinguishing between plant cold resistance and sensitivity is critical for cultivar breeding and the development of germplasm resources. This study used 205 tobacco (Nicotiana tabacum L.) varieties from around the world to investigate the changes in the chlorophyll a fluorescence (OJIP) transients, JIP-test parameters, and seedling growth caused by seven days of CS (5°C) treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!