Levels of asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide synthase, are increased in lung, sputum, exhaled breath condensate and plasma samples from asthma patients. ADMA is metabolized primarily by dimethylarginine dimethylaminohydrolase 1 (DDAH1) and DDAH2. We determined the effect of DDAH1 overexpression on development of allergic inflammation in a mouse model of asthma. The expression of DDAH1 and DDAH2 in mouse lungs was determined by RT-quantitative PCR (qPCR). ADMA levels in bronchoalveolar lavage fluid (BALF) and serum samples were determined by mass spectrometry. Wild type and DDAH1-transgenic mice were intratracheally challenged with PBS or house dust mite (HDM). Airway inflammation was assessed by bronchoalveolar lavage (BAL) total and differential cell counts. The levels of IgE and IgG1 in BALF and serum samples were determined by ELISA. Gene expression in lungs was determined by RNA-Seq and RT-qPCR. Our data showed that the expression of DDAH1 and DDAH2 was decreased in the lungs of mice following HDM exposure, which correlated with increased ADMA levels in BALF and serum. Transgenic overexpression of DDAH1 resulted in decreased BAL total cell and eosinophil numbers following HDM exposure. Total IgE levels in BALF and serum were decreased in HDM-exposed DDAH1-transgenic mice compared to HDM-exposed wild type mice. RNA-Seq results showed downregulation of genes in the inducible nitric oxide synthase (iNOS) signaling pathway in PBS-treated DDAH1-transgenic mice versus PBS-treated wild type mice and downregulation of genes in IL-13/FOXA2 signaling pathway in HDM-treated DDAH1-transgenic mice versus HDM-treated wild type mice. Our findings suggest that decreased expression of DDAH1 and DDAH2 in the lungs may contribute to allergic asthma and overexpression of DDAH1 attenuates allergen-induced airway inflammation through modulation of Th2 responses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3894860 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0085148 | PLOS |
Trends Mol Med
June 2024
Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany.
The enzyme dimethylarginine dimethylaminohydrolase (DDAH) 1 metabolizes asymmetric dimethylarginine (ADMA), a critical endogenous cardiovascular risk factor. In the past two decades, there has been significant controversy about whether DDAH2, the other DDAH isoform, is also able to directly metabolize ADMA. There has been evidence that DDAH2 regulates several critical processes involved in cardiovascular and immune homeostasis.
View Article and Find Full Text PDFNat Commun
June 2023
Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany.
Dimethylarginine dimethylaminohydrolase 1 (DDAH1) protects against cardiovascular disease by metabolising the risk factor asymmetric dimethylarginine (ADMA). However, the question whether the second DDAH isoform, DDAH2, directly metabolises ADMA has remained unanswered. Consequently, it is still unclear if DDAH2 may be a potential target for ADMA-lowering therapies or if drug development efforts should focus on DDAH2's known physiological functions in mitochondrial fission, angiogenesis, vascular remodelling, insulin secretion, and immune responses.
View Article and Find Full Text PDFGenet Mol Biol
October 2022
Universidade de São Paulo, Departamento de Enfermagem Psiquiátrica e Ciências Humanas, Ribeirão Preto, São Paulo, SP, Brazil.
Nitric Oxide (NO) has important biological functions, and its production may be influenced by genetic polymorphisms. Since NO mediates the drug response, the same genetic polymorphism that alter NO levels may also impact drug therapy. The vast majority of studies in the literature that assess the genetic influence on NO-related drug response focus on NOS3 (which encodes endothelial nitric oxide synthase), however several other proteins are interconnected in the same pathway and may also impact NO availability and drug response.
View Article and Find Full Text PDFInt J Mol Sci
October 2022
Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.
The contribution of nitric oxide synthases (NOSs) to the pathophysiology of several neuropsychiatric disorders is recognized, but the role of their regulators, dimethylarginine dimethylaminohydrolases (DDAHs), is less understood. This study's objective was to estimate DDAH1 and DDAH2 associations with biological processes implicated in major psychiatric disorders using publicly accessible expression databases. Since co-expressed genes are more likely to be involved in the same biologic processes, we investigated co-expression patterns with DDAH1 and DDAH2 in the dorsolateral prefrontal cortex in psychiatric patients and control subjects.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
August 2022
Department of Radiation Oncology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Medicine, Section on Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, TX 77030, USA. Electronic address:
Background: Proton pump inhibitors (PPIs) are widely prescribed drugs for the treatment of gastroesophageal reflux disease (GERD). Several meta-analysis studies have reported associations between prolonged use of PPIs and major adverse cardiovascular events. However, interaction of PPIs with biological molecules involved in cardiovascular health is incompletely characterized.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!