Utilizing nanobody technology to target non-immunodominant domains of VAR2CSA.

PLoS One

Centre for Medical Parasitology at Department of International Health, Immunology, and Microbiology, University of Copenhagen and at Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark.

Published: October 2014

Placental malaria is a major health problem for both pregnant women and their fetuses in malaria endemic regions. It is triggered by the accumulation of Plasmodium falciparum-infected erythrocytes (IE) in the intervillous spaces of the placenta and is associated with foetal growth restriction and maternal anemia. IE accumulation is supported by the binding of the parasite-expressed protein VAR2CSA to placental chondroitin sulfate A (CSA). Defining specific CSA-binding epitopes of VAR2CSA, against which to target the immune response, is essential for the development of a vaccine aimed at blocking IE adhesion. However, the development of a VAR2CSA adhesion-blocking vaccine remains challenging due to (i) the large size of VAR2CSA and (ii) the extensive immune selection for polymorphisms and thereby non-neutralizing B-cell epitopes. Camelid heavy-chain-only antibodies (HcAbs) are known to target epitopes that are less immunogenic to classical IgG and, due to their small size and protruding antigen-binding loop, able to reach and recognize cryptic, conformational epitopes which are inaccessible to conventional antibodies. The variable heavy chain (VHH) domain is the antigen-binding site of camelid HcAbs, the so called Nanobody, which represents the smallest known (15 kDa) intact, native antigen-binding fragment. In this study, we have used the Nanobody technology, an approach new to malaria research, to generate small and functional antibody fragments recognizing unique epitopes broadly distributed on VAR2CSA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3897377PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0084981PLOS

Publication Analysis

Top Keywords

nanobody technology
8
var2csa placental
8
var2csa
6
epitopes
5
utilizing nanobody
4
technology target
4
target non-immunodominant
4
non-immunodominant domains
4
domains var2csa
4
placental malaria
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!