Carbon dioxide, latent and sensible energy fluxes were measured by means of the eddy covariance method above a mountain meadow situated on a steep slope in the Stubai Valley/Austria, based on the hypothesis that, due to the low canopy height, measurements can be made in the shallow equilibrium layer where the wind field exhibits characteristics akin to level terrain. In order to test the validity of this hypothesis and to identify effects of complex terrain in the turbulence measurements, data were subjected to a rigorous testing procedure using a series of quality control measures established for surface layer flows. The resulting high-quality data set comprised 36 % of the original observations, the substantial reduction being mainly due to a change in surface roughness and associated fetch limitations in the wind sector dominating during nighttime and transition periods. The validity of the high-quality data set was further assessed by two independent tests: i) a comparison with the net ecosystem carbon dioxide exchange measured by means of ecosystem chambers and ii) the ability of the eddy covariance measurements to close the energy balance. The net ecosystem CO exchange measured by the eddy covariance method agreed reasonably with ecosystem chamber measurements. The assessment of the energy balance closure showed that there was no significant difference in the correspondence between the meadow on the slope and another one situated on flat ground at the bottom of the Stubai Valley, available energy being underestimated by 28 and 29 %, respectively. We thus conclude that, appropriate quality control provided, the eddy covariance measurements made above a mountain meadow on a steep slope are of similar quality as compared to flat terrain.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3898019 | PMC |
http://dx.doi.org/10.1007/s10546-006-9109-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!