Alkylamine-tethered stable metal-organic framework for CO(2) capture from flue gas.

ChemSusChem

Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026 (P.R. China).

Published: March 2014

Different alkylamine molecules were post-synthetically tethered to the unsaturated Cr(III) centers in the metal-organic framework MIL-101. The resultant metal-organic frameworks show almost no N2 adsorption with significantly enhanced CO2 capture under ambient conditions as a result of the interaction between amine groups and CO2 molecules. Given the extraordinary stability, high CO2 uptake, ultrahigh CO2 /N2 selectivity, and mild regeneration energy, MIL-101-diethylenetriamine holds exceptional promise for post-combustion CO2 capture and CO2 /N2 separation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cssc.201301163DOI Listing

Publication Analysis

Top Keywords

co2 capture
12
metal-organic framework
8
co2 /n2
8
co2
7
alkylamine-tethered stable
4
stable metal-organic
4
framework co2
4
capture flue
4
flue gas
4
gas alkylamine
4

Similar Publications

A new prediction model based on deep learning for pig house environment.

Sci Rep

December 2024

School of Mechanical and Electrical Engineering, Qiqihar University, Qiqihar, 161006, China.

A prediction model of the pig house environment based on Bayesian optimization (BO), squeeze and excitation block (SE), convolutional neural network (CNN) and gated recurrent unit (GRU) is proposed to improve the prediction accuracy and animal welfare and take control measures in advance. To ensure the optimal model configuration, the model uses a BO algorithm to fine-tune hyper-parameters, such as the number of GRUs, initial learning rate and L2 normal form regularization factor. The environmental data are fed into the SE-CNN block, which extracts the local features of the data through convolutional operations.

View Article and Find Full Text PDF

Porous carbon adsorption represents a critical component of CCUS technologies, with microporous structures playing an essential role in CO capture. The preparation of porous carbon introduces intrinsic defects, making it essential to consider both pore size and these defects for a comprehensive understanding of the CO adsorption mechanism. This study investigates the mechanisms of CO adsorption influenced by intrinsic defects and pore size using multiscale methods, incorporating experimental validation, Grand Canonical Monte Carlo simulations, and Density Functional Theory simulations.

View Article and Find Full Text PDF

Pore-Controllable Synthesis of Phthalic Acid-Derived Hierarchical Activated Carbon for Dilute CO Capture.

Inorg Chem

December 2024

Textile Pollution Controlling Engineering Center of Ministry of Ecology and Environment, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China.

Carbon capture and storage (CCS) from dilute sources is an important strategy for stabilizing the concentration of atmospheric carbon dioxide and global temperature. However, the adsorption process is extremely challenging due to the sluggish diffusion rate of dilute CO. Herein, -phthalic acid (PTA)-derived hierarchical porous activated carbon (PTA-C) with abundant micro- and mesopores was successfully prepared for dilute CO (2 vol %) capture at ambient conditions.

View Article and Find Full Text PDF

This work presents the PULPO (ython-based ser-defined ifecycle roduct ptimization) framework, developed to efficiently integrate life cycle inventory (LCI) models into life cycle product optimization. Life cycle optimization (LCO), which has found interest in both the process systems engineering and life cycle assessment (LCA) communities, leverages LCA data to go beyond simple assessments of a limited number of alternatives and identify the best possible product systems configuration subject to a manifold of choices, constraints, and objectives. However, typically, aggregated inventories are used to build the optimization problems.

View Article and Find Full Text PDF

Recent studies indicate that greenhouse gas (GHG) emissions from agricultural drainage ditches can be significant on a per-unit area basis, but spatiotemporal investigations are still limited. Additionally, the impact of dredging - a common management in such environments - on ditch GHG emissions is largely unknown. This study presents year-round GHG emissions from nine ditches on a dairy farm in the center of the Netherlands, where each year, approximately half of the ditches are dredged in alternating cycles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!