The protein kinase Mst1 (mammalian Sterile 20-like kinase 1) likely plays a role in oxidative neuronal cell death as a target of its activator, cAbl. We previously found that H2O2-induced death of astrocytes is mediated by cAbl in a metallothionein-3 (Mt3)-dependent manner. In the present study, we examined a possible role for Mst1 in the oxidative death of astrocytes. Treatment of cortical astrocytes with 170 µM H2O2 activated Mst1. Knockdown of Mst1 reduced H2O2-induced cell death, indicating that Mst1 activation contributes to astrocytic cell death. STI571, an inhibitor of cAbl, blocked induction/activation of Mst1 and H2O2-induced cell death. However, Mst1 silencing also inhibited induction/activation of cAbl, suggesting that the two kinases are regulated by a reciprocal activating mechanism. The zinc chelator TPEN blocked induction/activation of cAbl and Mst1, indicating that these phenomena are dependent on the rise of intracellular zinc. Moreover, H2O2 exposure did not increase free zinc levels in Mt3-null astrocytes, suggesting that the increased levels of free zinc were largely from Mt3. Consistent with the involvement of FoxO1/3, which may play a role in the Mst1-cell death cascade, we found an increase in the level of phosphorylated FoxO1/3 in H2O2-treated astrocytes. Moreover, inhibition of cAbl or Mst1 reversed this effect. The present results suggest the interesting possibility that cAbl and Mst1 are reciprocally activated under oxidative stress conditions in astrocytes. Both kinases appear to be regulated by changes in the levels of free zinc originating from Mt3 and contribute to oxidative cell death through a FoxO-dependent mechanism.

Download full-text PDF

Source
http://dx.doi.org/10.1002/glia.22631DOI Listing

Publication Analysis

Top Keywords

cell death
20
cabl mst1
16
free zinc
12
mst1
11
death
9
cabl
8
mst1 oxidative
8
oxidative death
8
death astrocytes
8
h2o2-induced cell
8

Similar Publications

Impact of hyper- and hypothermia on cellular and whole-body physiology.

J Intensive Care

January 2025

Department of Anesthesiology, Critical Care, and Surgery, Duke University School of Medicine, Durham, NC, USA.

The incidence of heat-related illnesses and heatstroke continues to rise amidst global warming. Hyperthermia triggers inflammation, coagulation, and progressive multiorgan dysfunction, and, at levels above 40 °C, can even lead to cell death. Blood cells, particularly granulocytes and platelets, are highly sensitive to heat, which promotes proinflammatory and procoagulant changes.

View Article and Find Full Text PDF

Autophagy in brain tumors: molecular mechanisms, challenges, and therapeutic opportunities.

J Transl Med

January 2025

Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, No. 569 Xinsi Road, Xi'an, China.

Autophagy is responsible for maintaining cellular balance and ensuring survival. Autophagy plays a crucial role in the development of diseases, particularly human cancers, with actions that can either promote survival or induce cell death. However, brain tumors contribute to high levels of both mortality and morbidity globally, with resistance to treatments being acquired due to genetic mutations and dysregulation of molecular mechanisms, among other factors.

View Article and Find Full Text PDF

Targeting lipid metabolism: novel insights and therapeutic advances in pancreatic cancer treatment.

Lipids Health Dis

January 2025

Emergency surgery Dapartment (Trauma center), The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, Henan, China.

Lipid metabolism in cancer is characterized by dysregulated lipid regulation and utilization, critical for promoting tumor growth, survival, and resistance to therapy. Pancreatic cancer (PC) is a highly aggressive malignancy of the gastrointestinal tract that has a dismal 5-year survival rate of less than 10%. Given the essential function of the pancreas in digestion, cancer progression severely disrupts its function.

View Article and Find Full Text PDF

Background: Acute myeloid leukemia (AML) is an aggressive hematological neoplasm. Little improvement in survival rates has been achieved over the past few decades. Necroptosis has relationship with certain types of malignancies outcomes.

View Article and Find Full Text PDF

Background: Mitochondria generate the adenosine triphosphate (ATP) necessary for eukaryotic cells, serving as their primary energy suppliers, and contribute to host defense by producing reactive oxygen species. In many critical illnesses, including sepsis, major trauma, and heatstroke, the vicious cycle between activated coagulation and inflammation results in tissue hypoxia-induced mitochondrial dysfunction, and impaired mitochondrial function contributes to thromboinflammation and cell death.

Methods: A computer-based online search was performed using the PubMed and Web of Science databases for published articles concerning sepsis, trauma, critical illnesses, cell death, mitochondria, inflammation, coagulopathy, and organ dysfunction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!