A diverse set of 154 chemicals that included US Food and Drug Administration-regulated compounds tested for their aquatic toxicity in Daphnia magna were modeled by a 3-dimensional quantitative spectral data-activity relationship (3D-QSDAR). Two distinct algorithms, partial least squares (PLS) and Tanimoto similarity-based k-nearest neighbors (KNN), were used to process bin occupancy descriptor matrices obtained after tessellation of the 3D-QSDAR space into regularly sized bins. The performance of models utilizing bins ranging in size from 2 ppm × 2 ppm × 0.5 Å to 20 ppm × 20 ppm × 2.5 Å was explored. Rigorous quality-control criteria were imposed: 1) 100 randomized 20% hold-out test sets were generated and the average R(2) test of the respective models was used as a measure of their performance, and 2) a Y-scrambling procedure was used to identify chance correlations. A consensus between the best-performing composite PLS model using 0.5 Å × 14 ppm × 14 ppm bins and 10 latent variables (average R(2) test  = 0.770) and the best composite KNN model using 0.5 Å × 8 ppm × 8 ppm and 2 neighbors (average R(2) test  = 0.801) offered an improvement of about 7.5% (R(2) test consensus  = 0.845). Projection of the most frequently occurring bins on the standard coordinate space indicated that the presence of a primary or secondary amino group-substituted aromatic systems-would result in an increased toxic effect in Daphnia. The presence of a second aromatic ring with highly electronegative substituents 5 Å to 7 Å apart from the first ring would lead to a further increase in toxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1002/etc.2534DOI Listing

Publication Analysis

Top Keywords

average test
12
quantitative spectral
8
spectral data-activity
8
data-activity relationship
8
test
5
partial square
4
square k-nearest
4
k-nearest neighbor
4
neighbor algorithms
4
algorithms improved
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!