Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Acetate kinase (ACK) converts acetyl phosphate to acetate along with the generation of ATP in the pathway for mixed-acid fermentation in Lactococcus lactis. The reverse reaction yields acetyl phosphate for assimilation purposes. Remarkably, L. lactis has two ACK isozymes, and the corresponding genes are present in an operon. We purified both enzymes (AckA1 and AckA2) from L. lactis MG1363 and determined their oligomeric state, specific activities, and allosteric regulation. Both proteins form homodimeric complexes, as shown by size exclusion chromatography and static light-scattering measurements. The turnover number of AckA1 is about an order of magnitude higher than that of AckA2 for the reaction in either direction. The Km values for acetyl phosphate, ATP, and ADP are similar for both enzymes. However, AckA2 has a higher affinity for acetate than does AckA1, suggesting an important role under acetate-limiting conditions despite the lower activity. Fructose-1,6-bisphosphate, glyceraldehyde-3-phosphate, and phospho-enol-pyruvate inhibit the activities of AckA1 and AckA2 to different extents. The allosteric regulation of AckA1 and AckA2 and the pool sizes of the glycolytic intermediates are consistent with a switch from homolactic to mixed-acid fermentation upon slowing of the growth rate.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3993343 | PMC |
http://dx.doi.org/10.1128/JB.01277-13 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!