Purpose: Devices constantly tracking the blood pressure (BP) of hypertensive patients are highly desired to facilitate effective patient management and to reduce hospitalization. We report on experiences gathered in a pilot study that was designed to evaluate the prototype of a newly developed, minimally invasive implantable sensor system for long-term BP monitoring.
Methods: The device was implanted in the femoral artery (FA) of 12 sheep via standard FA catheterization under fluoroscopic control. Accuracy of the recorded blood pressure was determined by comparison with a reference catheter, which was positioned in the contralateral FA immediately after implantation. Regular follow-up included angiography, computed tomography (CT), and control of functionality and position of the BP sensor. Animals were euthanized after 6 months. FA segments with in situ pressure sensor underwent macroscopic and histopathologic examinations.
Results: All implantations of the novel sensor device in the FA were successful and uneventful. High-quality BP recordings were documented. Bland-Altman plots indicate very good agreement. Comparison with measurements taken from the reference sensor revealed mean differences and standard deviations of -0.56 ± 0.85, 0.29 ± 1.44, and 0.85 ± 2.27 mmHg (diastolic, systolic, and pulse pressure, respectively) after exclusion of one outlier. CT uncovered deficiencies in cable stability that were addressed in a redesign. No thrombus formation, necrosis, or apoptosis were detected.
Conclusions: The pilot study proved the technical feasibility of wireless BP measurement in the FA via a novel miniature sensor device.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00270-014-0842-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!