Nonparallel evolution, where independent populations occupy similar environments but show phenotypic differences, can uncover previously ignored selective factors. We investigated a nonparallelism in the life-history strategy of a Trinidadian guppy population, a system famous for parallel adaptation to differences in predation risk. We tested the hypothesis that high mortality drives an observed fast life-history pattern (i.e., earlier maturation and more frequent reproductive events) that is atypical for a low-predation environment. Using mark-recapture techniques, we compared neighboring low-predation populations, finding significantly higher mortality rates in the population with atypical life-history traits. Mortality was elevated during the wet season, when flooding was common. Moreover, individuals from the anomalous population were more likely to transition from healthy to infected disease states. Our results stand out against previous patterns observed in this system, indicating that higher mortality caused by disease and flooding may have selected for a faster life history. Thus, we highlight that even in systems famous for parallel adaptation, variation in selective pressures can result in nonparallel phenotypic evolution.

Download full-text PDF

Source
http://dx.doi.org/10.1086/674611DOI Listing

Publication Analysis

Top Keywords

disease flooding
8
famous parallel
8
parallel adaptation
8
higher mortality
8
parallelism perfect
4
perfect disease
4
flooding drive
4
life-history
4
drive life-history
4
life-history anomaly
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!