Objective: Lithium and valproic acid (VPA) have been reported to produce antioxidant effects by increasing the transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) expression, which may contribute to their neuroprotective properties. As a coactivator for many transcriptional factors including PGC-1α, coactivator-associated arginine methyltransferase1(CARM1) regulates oxidative metabolism and mitochondrial biogenesis. Besides, Sirtuin3 (SIRT3), a new target of PGC-1α, plays an important role in preserving mitochondrial function.

Results: Here we found that protein levels of SIRT3 and CARM1 were decreased during oxidative stress in motor neuronal cells (NSC34). Pretreatment of NSC34 cells with lithium (5 mmol/L), VPA (1 mmol/L), or lithium plus VPA for 24 hours, significantly reduced hydrogen peroxide (H2O2)-induced cytotoxicity, and increased SIRT3 and CARM1 levels.

Conclusion: Our results suggest that lithium and VPA may decrease vulnerability of motor neuronal cells to cellular injury evoked by oxidative stress, which possibly arising from putative mitochondrial disturbances. And further study of the molecular mechanisms of SIRT3 and CARM1 regulation may provide a novel target for treating motor neuron disease.

Download full-text PDF

Source

Publication Analysis

Top Keywords

sirt3 carm1
16
oxidative stress
12
nsc34 cells
8
motor neuronal
8
neuronal cells
8
lithium vpa
8
lithium
5
sirt3
5
lithium valproate
4
valproate acid
4

Similar Publications

Epigenetic regulators controlling osteogenic lineage commitment and bone formation.

Bone

April 2024

Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands; Department of Biochemistry, University of Vermont, Burlington, VT, USA. Electronic address:

Article Synopsis
  • - Bone development and maintenance are influenced by environmental factors and hormones that activate signaling pathways, affecting gene expression in the nucleus.
  • - Gene expression related to bone is regulated by chromatin structure, which controls the accessibility of DNA sequences necessary for bone formation, especially during early embryonic stages to prevent premature mineralization.
  • - Key epigenetic regulators, including various enzymes, play crucial roles in either promoting or inhibiting bone cell differentiation and function, impacting the behavior of stem cells and their development into bone-forming cells (osteoblasts).
View Article and Find Full Text PDF

Objective: Lithium and valproic acid (VPA) have been reported to produce antioxidant effects by increasing the transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) expression, which may contribute to their neuroprotective properties. As a coactivator for many transcriptional factors including PGC-1α, coactivator-associated arginine methyltransferase1(CARM1) regulates oxidative metabolism and mitochondrial biogenesis. Besides, Sirtuin3 (SIRT3), a new target of PGC-1α, plays an important role in preserving mitochondrial function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!