RNA-directed DNA methylation in Arabidopsis thaliana depends on the upstream synthesis of 24-nucleotide small interfering RNAs (siRNAs) by RNA POLYMERASE IV (Pol IV) and downstream synthesis of non-coding transcripts by Pol V. Pol V transcripts are thought to interact with siRNAs which then recruit DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2) to methylate DNA. The SU(VAR)3-9 homologues SUVH2 and SUVH9 act in this downstream step but the mechanism of their action is unknown. Here we show that genome-wide Pol V association with chromatin redundantly requires SUVH2 and SUVH9. Although SUVH2 and SUVH9 resemble histone methyltransferases, a crystal structure reveals that SUVH9 lacks a peptide-substrate binding cleft and lacks a properly formed S-adenosyl methionine (SAM)-binding pocket necessary for normal catalysis, consistent with a lack of methyltransferase activity for these proteins. SUVH2 and SUVH9 both contain SRA (SET- and RING-ASSOCIATED) domains capable of binding methylated DNA, suggesting that they function to recruit Pol V through DNA methylation. Consistent with this model, mutation of DNA METHYLTRANSFERASE 1 (MET1) causes loss of DNA methylation, a nearly complete loss of Pol V at its normal locations, and redistribution of Pol V to sites that become hypermethylated. Furthermore, tethering SUVH9 [corrected] with a zinc finger to an unmethylated site is sufficient to recruit Pol V and establish DNA methylation and gene silencing. These results indicate that Pol V is recruited to DNA methylation through the methyl-DNA binding SUVH2 and SUVH9 proteins, and our mechanistic findings suggest a means for selectively targeting regions of plant genomes for epigenetic silencing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3963826PMC
http://dx.doi.org/10.1038/nature12931DOI Listing

Publication Analysis

Top Keywords

dna methylation
24
suvh2 suvh9
20
dna
9
pol
9
rna polymerase
8
recruit pol
8
suvh9
7
methylation
6
suvh2
5
sra- set-domain-containing
4

Similar Publications

Epigenetic alteration in cervical cancer induced by human papillomavirus.

Int Rev Cell Mol Biol

January 2025

Posgrado en Ciencias Genómicas, Laboratorio de Patogenesis Celular y Molecular Humana y Veterinaria, Universidad Autónoma de la Ciudad de México, Ciudad de México, México. Electronic address:

The critical role of a subset of Human Papillomavirus in cervical cancer has been widely acknowledged and studied. Despite progress in our understanding of the viral molecular mechanisms of pathogenesis, knowledge of how infection with HPV oncogenic variants progresses from latent infection to incurable cancer has not been completely elucidated. In this paper we reviewed the relationship between HPV infection and epigenetic mechanisms such as histone acetylation and deacetylation, DNA methylation and non-coding RNAs associated with this infection and the carcinogenic process.

View Article and Find Full Text PDF

Epigenetic modulation of doxorubicin resistance and strategies for enhancing chemotherapeutic sensitivity.

Int Rev Cell Mol Biol

January 2025

Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, India. Electronic address:

With the rising global cancer burden, the dependency on chemotherapy also rises along with the complication of chemoresistance development. Studies on multi-drug resistant proteins provide a wide range of regulators, although the exact mechanism is not yet clearly understood. Epigenetic modifications play a vital role in the regulation of cellular processes and also in determining the efficacy of cancer therapy by modulating resistance development and tumor progression.

View Article and Find Full Text PDF

Revisiting epigenetic regulation in cancer: Evolving trends and translational implications.

Int Rev Cell Mol Biol

January 2025

Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, India. Electronic address:

Cancer is a leading cause of mortality worldwide. The evolving role of epigenetics and tumor microenvironments of cancer pose significant challenges to the management of cancer. Besides genetics, epigenetic changes play a crucial role in the alteration of cellular machinery, progression, metastasis, epithelial-mesenchymal transition, and chemoresistance.

View Article and Find Full Text PDF

Personality disorders (PDs) are psychiatric conditions characterized by enduring patterns of cognition, emotion, and behaviour that deviate significantly from cultural norms, causing distress or impairment. The aetiology of PDs is complex, involving both genetic and environmental factors. Genetic studies estimate the heritability of PDs at 30% to 60%, implicating genes involved in neurotransmitter regulation, such as those for serotonin transporters and dopamine receptors.

View Article and Find Full Text PDF

SMYD3 plays a pivotal role in mediating the epithelial-mesenchymal transition process in breast cancer.

Biochem Biophys Res Commun

January 2025

Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China. Electronic address:

In previous reports, we highlighted the significant involvement of SMYD3, a histone methyltransferase (HMT), in various aspects of cancer progression, including cell adhesion, migration, and invasion. In this study, we delved deeper into understanding the relationship between SMYD3 and epithelial-mesenchymal transition (EMT) both in cell lines and clinical samples. Our investigation uncovered a notable correlation between heightened SMYD3 expression and the presence of EMT markers in human breast cancer tissues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!