The crystal and molecular structures of the anti-acquired immunodeficiency syndrome agent 3'-azido-3'-deoxythymidine (AZT) have been determined by x-ray diffraction. There are two crystallographically independent AZT molecules in the crystal asymmetric unit; they have similar conformations and differ primarily in the glycosyl torsion angle. Comparisons with a hydrated thymidylate structure indicate that the azido group does not significantly affect the gross conformational preference of the molecule. The comparisons also suggest possible functional roles for the azido group in enzyme binding.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC299517 | PMC |
http://dx.doi.org/10.1073/pnas.84.23.8239 | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.
The use of proteins as intracellular probes and therapeutic tools is often limited by poor intracellular delivery. One approach to enabling intracellular protein delivery is to transform proteins into spherical nucleic acid (proSNA) nanoconstructs, with surfaces chemically modified with a dense shell of radially oriented DNA that can engage with cell-surface receptors that facilitate endocytosis. However, proteins often have a limited number of available reactive surface residues for DNA conjugation such that the extent of DNA loading and cellular uptake is restricted.
View Article and Find Full Text PDFOrg Lett
January 2025
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing 210094, Jiangsu, China.
Energetic materials containing a pyrazolotriazine oxide skeleton have the potential for high performance. However, research on the pyrazolotriazine oxide skeleton is very limited due to the inherent ring system instability and limited synthetic approaches. In this paper, APTO and OPTO with a combination of high-nitrogen tetrazole and a promising azido-pyrazolotriazine oxide skeleton have been synthesized.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku Tokyo 125-8585, Japan.
Divergent synthesis of triazoles was achieved using newly designed platform molecules possessing azide, alkyne, and fluorosulfonyl moieties. Consecutive conjugations by the sulfur(VI) fluoride exchange and following consecutive triazole formations allowed us to prepare a wide variety of bis(triazole)s by virtue of selective transformations. One-pot triple-click assembly of easily accessible modules led to the facile synthesis of middle-molecular-weight triazoles with various functional moieties.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Chemistry, University of California, Davis, California 95616, United States.
Protein-protein interactions in the cell membrane are typically mediated by glycans, with terminal sialic acid often involved in these interactions. To probe the nature of the interactions, we developed quantitative cross-linking methods involving the glycans of the glycoproteins and the polypeptide moieties of proteins. We designed and synthesized biotinylated enrichable cross-linkers that were click-tagged to metabolically incorporate azido-sialic acid on cell surface glycans to allow cross-linking of the azido-glycans with lysine residues on proximal polypeptides.
View Article and Find Full Text PDFCarbohydr Res
December 2024
Sweet Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, 741246, India. Electronic address:
Synthesis of the tetrasaccharide repeating unit of the O-polysaccharide from Halomonas fontilapidosi KR26 was accomplished through a convergent [2 + 2]-block strategy using rationally protected monosaccharide synthons derived from commercially available sugars. The target tetrasaccharide was synthesized in the form of its 2-azidoethyl glycoside to ensure further conjugation with specific aglycons without hampering the reducing end stereochemistry. Use of only acyl/aryl protecting groups was targeted to keep the terminal azido-group intact for the utilization of "Click chemistry" for further conjugations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!