A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Photodegradation of the azole fungicide fluconazole in aqueous solution under UV-254: kinetics, mechanistic investigations and toxicity evaluation. | LitMetric

Photodegradation of the azole fungicide fluconazole in aqueous solution under UV-254: kinetics, mechanistic investigations and toxicity evaluation.

Water Res

State Key Laboratory of Organic Geochemistry, CAS Centre for Pearl River Delta Environmental Pollution and Control Research, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.

Published: April 2014

The azole fungicide fluconazole has been reported to be persistent in conventional wastewater treatment plants. This study investigated the photodegradation of fluconazole under UV-254 in aqueous solutions. The results revealed that the photodegradation of fluconazole was pH-dependent (2.0-12.0) following the pseudo-first-order kinetics with quantum yield values ranging from 0.023 to 0.090 mol einstein(-1), and it underwent a direct and self-sensitized mechanism involving (1)O2. The main photodegradation by-products were identified and semi-quantitated. The proposed photodegradation pathway included hydroxylative defluorination reaction. The 72 h-NOEC and 72 h-LOEC values for fluconazole using a freshwater unicellular green alga Pseudokirchneriella subcapitata were 10 μM and 15 μM. Overall, the photodegradation of fluconazole produced a significant decrease in algal toxicity. It also proved that the photodegradation by-products will not present extra toxicity to this alga than fluconazole itself.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2013.12.039DOI Listing

Publication Analysis

Top Keywords

photodegradation fluconazole
12
azole fungicide
8
fungicide fluconazole
8
photodegradation by-products
8
photodegradation
7
fluconazole
7
photodegradation azole
4
fluconazole aqueous
4
aqueous solution
4
solution uv-254
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!