Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The azole fungicide fluconazole has been reported to be persistent in conventional wastewater treatment plants. This study investigated the photodegradation of fluconazole under UV-254 in aqueous solutions. The results revealed that the photodegradation of fluconazole was pH-dependent (2.0-12.0) following the pseudo-first-order kinetics with quantum yield values ranging from 0.023 to 0.090 mol einstein(-1), and it underwent a direct and self-sensitized mechanism involving (1)O2. The main photodegradation by-products were identified and semi-quantitated. The proposed photodegradation pathway included hydroxylative defluorination reaction. The 72 h-NOEC and 72 h-LOEC values for fluconazole using a freshwater unicellular green alga Pseudokirchneriella subcapitata were 10 μM and 15 μM. Overall, the photodegradation of fluconazole produced a significant decrease in algal toxicity. It also proved that the photodegradation by-products will not present extra toxicity to this alga than fluconazole itself.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2013.12.039 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!