Avian feathers have robust growth and regeneration capability. To evaluate the contribution of signaling molecules and pathways in these processes, we profiled gene expression in the feather follicle using an absolute quantification approach. We identified hundreds of genes that mark specific components of the feather follicle: the dermal papillae (DP) which controls feather regeneration and axis formation, the pulp mesenchyme (Pp) which is derived from DP cells and nourishes the feather follicle, and the ramogenic zone epithelium (Erz) where a feather starts to branch. The feather DP is enriched in BMP/TGF-β signaling molecules and inhibitors for Wnt signaling including Dkk2/Frzb. Wnt ligands are mainly expressed in the feather epithelium and pulp. We find that while Wnt signaling is required for the maintenance of DP marker gene expression and feather regeneration, excessive Wnt signaling delays regeneration and reduces pulp formation. Manipulating Dkk2/Frzb expression by lentiviral-mediated overexpression, shRNA-knockdown, or by antibody neutralization resulted in dual feather axes formation. Our results suggest that the Wnt signaling in the proximal feather follicle is fine-tuned to accommodate feather regeneration and axis formation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4384700 | PMC |
http://dx.doi.org/10.1016/j.ydbio.2014.01.010 | DOI Listing |
Int J Biol Macromol
January 2025
Department of Textiles, Merchandising and Fashion Design, 234 GNHS Building, University of Nebraska-Lincoln, Lincoln, NE 68583-0802, United States; Department of Biological Systems Engineering, 234 GNHS Building, University of Nebraska-Lincoln, Lincoln, NE 68583-0802, United States. Electronic address:
Sorption thermodynamics and kinetics of 100 % artificial keratin fibers with acid dyes have been studied to understand the surface properties, dyeability, and suitability for industrial applications. For a sustainable textile fiber industry, affordable biobased fibers with good dyeability and performance properties are essential for commercial acceptance. Artificial keratin fibers developed from waste feathers have already demonstrated excellent strength and wet stability due to their high degree of disulfide crosslinkages and can be cost-effective as well.
View Article and Find Full Text PDFSci Rep
August 2024
Liaoning Key Laboratory of Aircraft Fire Explosion Control and Reliability Airworthiness Technology, Shenyang Aerospace University, Shenyang, 110136, China.
The ecological benefits and concerns surrounding fossil fuels had led to increased interest in bio-based rigid polyurethane foam (RPUF). Nonetheless, due to its flammability, it had limited application in various fields. To solve this problem, a green bio-flame retardant, cobalt hydroxystannate (CoSn(OH)), was prepared and compounded with montmorillonite (MMT) and chick feather protein (CF), and applied to RPUF, which not only realized the regeneration of resources, but also provided RPUF with better thermal stability, flame retardancy and smoke suppression properties.
View Article and Find Full Text PDFGen Comp Endocrinol
October 2024
Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Kitaku, Tsushimanaka, Okayama 700-8530, Japan; Department of Biology, Faculty of Science, Okayama University, 3-1-1 Kitaku, Tsushimanaka, Okayama 700-8530, Japan; Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 3-1-1 Kitaku, Tsushimanaka, Okayama 700-8530, Japan. Electronic address:
Sexual dimorphism in plumage is widespread among avian species. In chickens, adult females exhibit countershading, characterized by dull-colored round feathers lacking fringe on the saddle, while adult males display vibrant plumage with deeply fringed bright feathers. This dimorphism is estrogen-dependent, and administering estrogen to males transforms their showy plumage into cryptic female-like plumage.
View Article and Find Full Text PDFCell
May 2024
Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, MIT, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, MIT, Cambridge, MA 02139, USA. Electronic address:
Turnover-constant component production and destruction-is ubiquitous in biology. Turnover occurs across organisms and scales, including for RNAs, proteins, membranes, macromolecular structures, organelles, cells, hair, feathers, nails, antlers, and teeth. For many systems, turnover might seem wasteful when degraded components are often fully functional.
View Article and Find Full Text PDFAllergol Select
May 2024
Laboratory Dr. Wisplinghoff.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!