A molecular docking analysis has been carried out to examine potential Leishmania protein targets of antiprotozoal plant-derived polyphenolic compounds. A total of 352 phenolic phytochemicals, including 10 aurones, six cannabinoids, 34 chalcones, 20 chromenes, 52 coumarins, 92 flavonoids, 41 isoflavonoids, 52 lignans, 25 quinones, eight stilbenoids, nine xanthones, and three miscellaneous phenolic compounds, were used in the virtual screening study using 24 Leishmania enzymes (52 different protein structures from the Protein Data Bank). Noteworthy protein targets were Leishmania dihydroorotate dehydrogenase, N-myristoyl transferase, phosphodiesterase B1, pteridine reductase, methionyl-tRNA synthetase, tyrosyl-tRNA synthetase, uridine diphosphate-glucose pyrophosphorylase, nicotinamidase, and glycerol-3-phosphate dehydrogenase. Based on in-silico analysis of antiparasitic polyphenolics in this study, two aurones, one chalcone, five coumarins, six flavonoids, one isoflavonoid, three lignans, and one stilbenoid, can be considered to be promising drug leads worthy of further investigation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmgm.2013.12.010 | DOI Listing |
Dig Dis Sci
January 2025
Ningxia Medical University, Xing Qing Block, Shengli Street No.1160, Yin Chuan City, 750004, Ningxia Province, People's Republic of China.
Background: Colon adenocarcinoma (COAD) is a leading cause of cancer-related mortality worldwide. Transient receptor potential vanilloid 4 (TRPV4), a calcium-permeable non-selective cation channel, has been implicated in various cancers, including COAD. This study investigates the role of TRPV4 in colon adenocarcinoma and elucidates its potential mechanism via the ferroptosis pathway.
View Article and Find Full Text PDFJ Neuroimmune Pharmacol
January 2025
Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, PR China.
Emerging evidence highlights the significance of peripheral inflammation in the pathogenesis of Parkinson's disease (PD) and suggests the gut as a viable therapeutic target. This study aimed to explore the neuroprotective effects of the probiotic formulation VSL#3 and its underlying mechanism in a PD mouse model induced by MPTP. Following MPTP administration, the striatal levels of dopamine and its metabolites, as along with the survival rate of dopaminergic neurons in the substantia nigra, were significantly reduced in PD mice.
View Article and Find Full Text PDFPurinergic Signal
January 2025
International Joint Research Centre On Purinergic Signalling, School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
In a recent article published in Nature Communications (Shigetomi et al Nat Commun 15(1):6525, 2024), Shigetomi et al. identified that upregulated astrocytic purinergic P2Y receptors (P2YR), acting via the downstream molecule, insulin-like growth factor binding protein 2 (IGFBP2), play a crucial role in neuronal hyperexcitability. In epilepsy and stroke models, P2YR-IGFBP2 signaling was found to mediate astrocyte-driven neuronal hyperexcitability and so is a new contributor to astrocyte-neuron communication.
View Article and Find Full Text PDFMikrochim Acta
January 2025
College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, China.
Myoglobin (Mb), an important cardiac marker, plays a crucial role in diagnosing, monitoring, and evaluating the condition of patients with cardiovascular diseases. Here, we propose a label-free photoelectrochemical (PEC) sensor for the detection of Mb through target regulated the photoactivity of AgS/FeOOH heterojunction. The AgS/FeOOH nanospindles were synthesized and served as a sensing platform for the fabrication of bio-recognized process for Mb.
View Article and Find Full Text PDFFunct Integr Genomics
January 2025
Department of Radiology, The Second Xiangya Hospital of Central South University, No. 139, Renmin Middle Road, Furong District, Changsha City, Hunan Province, 410011, China.
Post-traumatic epilepsy (PTE) is a debilitating chronic outcome of traumatic brain injury (TBI). Although FTO has been reported as a possible intervention target of TBI, its precise roles in the PTE remain incompletely understood. Here we used mild or serious mice TBI model to probe the role and molecular mechanism of FTO in PTE.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!