Background Context: Some postoperative complications after anterior cervical fusions have been attributed to anterior cervical plate (ACP) profiles and the necessary wide operative exposure for their insertion. Consequently, low-profile stand-alone interbody spacers with integrated screws (SIS) have been developed. Although SIS constructs have demonstrated similar biomechanical stability to the ACP in single-level fusions, their role as a stand-alone device in multilevel reconstructions has not been thoroughly evaluated.
Purpose: To evaluate the acute segmental stability afforded by an SIS device compared with the traditional ACP in the setting of a multilevel cervical arthrodesis.
Study Design: In vitro human cadaveric biomechanical analysis.
Methods: Thirteen human cadaveric cervical spines (C2-T1) were nondestructively tested with a custom 6 df spine simulator under axial rotation, flexion-extension, and lateral bending loading. After intact analysis, eight single-levels (C4-C5/C6-C7) from four specimens were instrumented and tested with ACP and SIS. Nine specimens were tested with C5-C7 SIS, C5-C7 ACP, C4-C7 ACP, C4-C7 ACP+posterior fixation, C4-C7 SIS, and C4-C7 SIS+posterior fixation. Testing order was randomized with each additional level instrumented. Full range of motion (ROM) data were obtained and analyzed by each loading modality, using mean comparisons with repeated measures analysis of variance. Paired t tests were used for post hoc analysis with Sidak correction for multiple comparisons.
Results: No significant difference in ROM was noted between the ACP and SIS for single-level fixation (p>.05). For multisegment reconstructions (two and three levels), the ACP proved superior to SIS and intact condition, with significantly lower ROM in all planes (p<.05). When either the three-level SIS or ACP constructs were supplemented with posterior lateral mass fixation, there was a greater than 80% reduction in ROM under all testing modalities (p<.05), with no significant difference between the ACP and SIS constructs (p>.05).
Conclusions: The SIS device may be a reasonable option as a stand-alone device for single-level fixation. However, SIS devices should be used with careful consideration in the setting of multilevel cervical fusion. However, when supplemented with posterior fixation, SIS devices are a sound biomechanical alternative to ACP for multilevel fusion constructs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.spinee.2014.01.034 | DOI Listing |
Front Bioeng Biotechnol
December 2024
Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qindao, China.
Background: Lumbar degenerative diseases are an important factor in disability worldwide, and they are also common among the elderly population. Stand-Alone Oblique Lumbar Interbody Fusion (Stand-Alone OLIF) is a novel surgical approach for treating lumbar degenerative diseases. However, long-term follow-up after surgery has revealed the risk of endplate collapse associated with Stand-Alone OLIF procedures.
View Article and Find Full Text PDFZhongguo Gu Shang
December 2024
The Second Department of Orthopaedics, Hospital of Coast Guard General Corps of Armed Police Forces, Jiaxing 314000, Zhejiang, China.
Objective: To explore characteristics, management strategies and preventive measures of fusion device displacement after oblique lateral interbody fusion (OLIF) in treating lumbar lesions.
Methods: The clinical data of 12 patients with fusion device displacement after OLIF for lumbar lesions in 4 medical centers from October 2014 to December 2018 were retrospectively analyzed, including 4 males and 8 females, aged from 53 to 81 years old;2 patients with lumbar disc degeneration, 4 patients with lumbar spinal stenosis, 3 patients with lumbar degenerative spondylolisthesis and 3 patients with lumbar degenerative kyphosis;preoperative dual-energy X-ray bone mineral density (BMD) was detected in 1 patient with T-value > -1 SD, 5 patients with T-value >-1~-2.5 SD, and 6 patients with T-value <-2.
Global Spine J
December 2024
Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
Study Design: Retrospective cohort study.
Objective: Limited clinical literature addresses potential differences in fusion features between Oblique lumbar interbody fusion (OLIF) and transforaminal lumbar interbody fusion (TLIF). We observed that in OLIF, there are many cases with the appearance of extra-vertebral bone bridges (EVB), a phenomenon distinct from traditional TLIF fusion.
Ann Biomed Eng
December 2024
Luzhou Key Laboratory of Orthopedic Disorders, Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, 646000, Sichuan, P.R. China.
J Neurosurg Spine
November 2024
Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona.
Objective: Outpatient spine surgery could reduce hospital costs and improve patient outcomes. Outpatient lateral lumbar interbody fusion (LLIF) can be performed for select patients. This study identified and compared the demographic, clinical, and surgical characteristics of patients who underwent outpatient versus inpatient single-level LLIF.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!