CTGF increases drug resistance to paclitaxel by upregulating survivin expression in human osteosarcoma cells.

Biochim Biophys Acta

Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan; Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan; Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan. Electronic address:

Published: May 2014

Osteosarcoma is the most common primary malignant tumor, and its treatments require more effective therapeutic approaches. Paclitaxel has a broad range of antitumor activities, including apoptosis-inducing effects. However, the majority of tumors in patients with advanced cancer eventually develop chemoresistance. Connective tissue growth factor (CTGF) is a secreted protein that modulates the invasiveness of certain human cancer cells by binding to integrins. However, the effect of CTGF in paclitaxel-mediated chemotherapy is unknown. Here, we report that the expression of CTGF in osteosarcoma patients was significantly higher than that of the CTGF expression in normal bone tissues. Overexpression of CTGF increased the resistance to paclitaxel-mediated cell apoptosis. In contrast, knockdown of CTGF expression by CTGF shRNA increased the chemotherapeutic effect of paclitaxel. In addition, CTGF increased resistance to paclitaxel-induced apoptosis through upregulation of survivin expression. Moreover, the AMP-activated protein kinase (AMPK)-dependent nuclear factor kappa B (NF-κB) pathway mediated paclitaxel-increased chemoresistance and survivin expression. In a mouse xenograft model, overexpression of CTGF promoted resistance to paclitaxel. In contrast, knockdown of CTGF expression increased the therapeutic effect of paclitaxel in this model. In conclusion, our data indicate that CTGF might be a critical oncogene of human osteosarcoma involved in resistance to paclitaxel treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbamcr.2014.01.007DOI Listing

Publication Analysis

Top Keywords

ctgf
12
resistance paclitaxel
12
survivin expression
12
ctgf expression
12
human osteosarcoma
8
expression ctgf
8
overexpression ctgf
8
ctgf increased
8
increased resistance
8
contrast knockdown
8

Similar Publications

Luteolin is widely distributed phytochemical, a flavonoid, in kingdom plantae. Luteolin with potential antioxidant activity prevent ROS-induced damages and reduce oxidative stress which is mainly responsible in pathogenesis of many diseases. Several chemo preventive activities and therapeutic benefits are associated with luteolin.

View Article and Find Full Text PDF

Endothelial cell (EC)-specific CTGF/CCN2 Expression Increases EC Reprogramming and Atherosclerosis.

Matrix Biol

January 2025

Department of Surgery, Emory University, Atlanta, GA, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA; Research Services, Atlanta VA Medical Center, Decatur, GA, USA. Electronic address:

Arterial endothelial cells (ECs) reside in a complex biomechanical environment. ECs sense and respond to wall shear stress. Low and oscillatory wall shear stress is characteristic of disturbed flow and commonly found at arterial bifurcations and around atherosclerotic plaques.

View Article and Find Full Text PDF

Background: Cardiac fibrosis plays a critical role in the progression of various forms of heart disease, significantly increasing the risk of sudden cardiac death. However, currently, there are no therapeutic strategies available to prevent the onset of cardiac fibrosis.

Methods And Results: Here, biomimetic ATP-responsive nanozymes based on genetically engineered cell membranes are adapted to specifically recognize activated cardiac fibroblasts (CFs) for the treatment of cardiac fibrosis.

View Article and Find Full Text PDF

The mechanism of fibrosis at the patella-patellar tendon junction (PPTJ) was investigated using a rabbit overuse jumping model. Thiry-two female New Zealand White rabbits were randomly divided into control and jumping groups, and each group was further divided into four groups at 2, 4, 6, and 8 weeks. The rabbits in the jumping group jumped 150 times per day, 5 days per week.

View Article and Find Full Text PDF

The notochord is an axial structure required for the development of all chordate embryos, from sea squirts to humans. Over the course of more than half a billion years of chordate evolution, in addition to its structural function, the notochord has acquired increasingly relevant patterning roles for its surrounding tissues. This process has involved the co-option of signaling pathways and the acquisition of novel molecular mechanisms responsible for the precise timing and modalities of their deployment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!