Mutation in osteoactivin decreases bone formation in vivo and osteoblast differentiation in vitro.

Am J Pathol

Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, Ohio; School of Biomedical Sciences, Kent State University, Kent, Ohio. Electronic address:

Published: March 2014

We have previously identified osteoactivin (OA), encoded by Gpnmb, as an osteogenic factor that stimulates osteoblast differentiation in vitro. To elucidate the importance of OA in osteogenesis, we characterized the skeletal phenotype of a mouse model, DBA/2J (D2J) with a loss-of-function mutation in Gpnmb. Microtomography of D2J mice showed decreased trabecular mass, compared to that in wild-type mice [DBA/2J-Gpnmb(+)/SjJ (D2J/Gpnmb(+))]. Serum analysis showed decreases in OA and the bone-formation markers alkaline phosphatase and osteocalcin in D2J mice. Although D2J mice showed decreased osteoid and mineralization surfaces, their osteoblasts were increased in number, compared to D2J/Gpnmb(+) mice. We then examined the ability of D2J osteoblasts to differentiate in culture, where their differentiation and function were decreased, as evidenced by low alkaline phosphatase activity and matrix mineralization. Quantitative RT-PCR analyses confirmed the decreased expression of differentiation markers in D2J osteoblasts. In vitro, D2J osteoblasts proliferated and survived significantly less, compared to D2J/Gpnmb(+) osteoblasts. Next, we investigated whether mutant OA protein induces endoplasmic reticulum stress in D2J osteoblasts. Neither endoplasmic reticulum stress markers nor endoplasmic reticulum ultrastructure were altered in D2J osteoblasts. Finally, we assessed underlying mechanisms that might alter proliferation of D2J osteoblasts. Interestingly, TGF-β receptors and Smad-2/3 phosphorylation were up-regulated in D2J osteoblasts, suggesting that OA contributes to TGF-β signaling. These data confirm the anabolic role of OA in postnatal bone formation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3936333PMC
http://dx.doi.org/10.1016/j.ajpath.2013.11.031DOI Listing

Publication Analysis

Top Keywords

d2j osteoblasts
28
d2j mice
12
endoplasmic reticulum
12
d2j
11
osteoblasts
9
bone formation
8
osteoblast differentiation
8
mice decreased
8
alkaline phosphatase
8
compared d2j/gpnmb+
8

Similar Publications

We previously reported on the importance of osteoactivin (OA/Gpnmb) in osteogenesis. In this study, we examined the role of OA in osteoclastogenesis, using mice with a nonsense mutation in the Gpnmb gene (D2J) and wild-type controls (D2J/Gpnmb(+)). In these D2J mice, micro-computed tomography and histomorphometric analyses revealed increased cortical thickness, whereas total porosity and eroded surface were significantly reduced in D2J mice compared with wild-type controls, and these results were corroborated by lower serum levels of CTX-1.

View Article and Find Full Text PDF

Mutation in osteoactivin decreases bone formation in vivo and osteoblast differentiation in vitro.

Am J Pathol

March 2014

Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, Ohio; School of Biomedical Sciences, Kent State University, Kent, Ohio. Electronic address:

We have previously identified osteoactivin (OA), encoded by Gpnmb, as an osteogenic factor that stimulates osteoblast differentiation in vitro. To elucidate the importance of OA in osteogenesis, we characterized the skeletal phenotype of a mouse model, DBA/2J (D2J) with a loss-of-function mutation in Gpnmb. Microtomography of D2J mice showed decreased trabecular mass, compared to that in wild-type mice [DBA/2J-Gpnmb(+)/SjJ (D2J/Gpnmb(+))].

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!