A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Facile synthesis of hierarchical and porous V2O5 microspheres as cathode materials for lithium ion batteries. | LitMetric

Facile synthesis of hierarchical and porous V2O5 microspheres as cathode materials for lithium ion batteries.

J Colloid Interface Sci

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China; Laboratory of Inorganic Materials Chemistry, University of Namur, 61 rue de Bruxelles, B-5000 Namur, Belgium. Electronic address:

Published: March 2014

Hierarchical and porous V2O5 microspheres have been fabricated by a refluxing approach followed by annealing in air. The resulting porous V2O5 microspheres typically have diameters of 3-6 μm and are constructed of intertwined laminar nanocrystals or crosslinked nanobricks. It is found that the vanadyl glycolates rinsed with water have pronounced pore structures than that rinsed with ethanol alone. In addition, the configuration of the vanadyl glycolates microspheres can be tuned during the refluxing along with stirring. The possible formation processes of the vanadyl glycolates and V2O5 products have been discussed based on the experimental data. Electrochemical tests indicate that the hierarchical and porous V2O5 microspheres exhibit relatively high and stable Li(+) storage properties. The porous V2O5 microspheres assembled by intertwined nanoparticles maintain reversible Li(+) storage capacities of 102 and 80 mAh g(-1), respectively; whilst the porous V2O5 microspheres assembled by crosslinked nanobricks maintain reversible Li(+) storage capacities of 100 and 85 mAh g(-1) over 100 cycles at current rates of 0.5 and 1 C, respectively. The superior Li(+) storage performance of the hierarchical and porous V2O5 microspheres could mainly be ascribed to the improved electrode/electrolyte interface, reduced Li(+) diffusion paths, and relieved volume variation during lithiation and delithiation processes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2013.12.011DOI Listing

Publication Analysis

Top Keywords

porous v2o5
28
v2o5 microspheres
28
hierarchical porous
16
li+ storage
16
vanadyl glycolates
12
v2o5
8
microspheres
8
crosslinked nanobricks
8
microspheres assembled
8
maintain reversible
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!