Cell based metabolic barriers to glucose diffusion: macrophages and continuous glucose monitoring.

Biomaterials

Center for Molecular Tissue Engineering, University of Connecticut, School of Medicine, Farmington, CT 06030, USA; Department of Surgery, University of Connecticut, School of Medicine, Farmington, CT 06030, USA.

Published: March 2014

It is assumed that MQ are central to glucose sensor bio-fouling and therefore have a major negative impact on continuous glucose monitoring (CGM) performance in vivo. However to our knowledge there is no data in the literature to directly support or refute this assumption. Since glucose and oxygen (O2) are key to glucose sensor function in vivo, understanding and controlling glucose and O2 metabolic activity of MQ is likely key to successful glucose sensor performance. We hypothesized that the accumulation of MQ at the glucose sensor-tissue interface will act as "Cell Based Metabolic Barriers" (CBMB) to glucose diffusing from the interstitial tissue compartment to the implanted glucose sensor and as such creating an artificially low sensor output, thereby compromising sensor function and CGM. Our studies demonstrated that 1) direct injections of MQ at in vivo sensor implantation sites dramatically decreased sensor output (measured in nA), 2) addition of MQ to glucose sensors in vitro resulted in a rapid and dramatic fall in sensor output and 3) lymphocytes did not affect sensor function in vitro or in vivo. These data support our hypothesis that MQ can act as metabolic barriers to glucose and O2 diffusion in vivo and in vitro.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3938107PMC
http://dx.doi.org/10.1016/j.biomaterials.2014.01.001DOI Listing

Publication Analysis

Top Keywords

glucose sensor
16
glucose
13
sensor function
12
sensor output
12
sensor
10
based metabolic
8
metabolic barriers
8
barriers glucose
8
glucose diffusion
8
continuous glucose
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!