Background: The endochitinase ChiA74 is a soluble secreted enzyme produced by Bacillus thuringiensis that synergizes the entomotoxigenecity of Cry proteins that accumulate as intracellular crystalline inclusion during sporulation. The purpose of this study was to produce alkaline-soluble ChiA74∆sp inclusions in B. thuringiensis, and to determine its effect on Cry crystal production, sporulation and toxicity to an important agronomical insect, Manduca sexta. To this end we deleted the secretion signal peptide-coding sequence of chiA74 (i.e. chiA74∆sp) and expressed it under its native promoter (pEHchiA74∆sp) or strong chimeric sporulation-dependent cytA-p/STAB-SD promoter (pEBchiA74∆sp) in Escherichia coli, acrystalliferous B. thuringiensis (4Q7) and B. thuringiensis HD1.

Results: Based on mRNA analyses, up to ~9-fold increase in expression of chiA74∆sp was observed using the cytA-p/STAB-SD promoter. ChiA74∆sp (~70 kDa) formed intracellular inclusions that frequently accumulated at the poles of cells. ChiA74∆sp inclusions were dissolved in alkali and reducing conditions, similar to Cry crystals, and retained its activity in a wide range of pH (5 to 9), but showed a drastic reduction (~70%) at pH 10. Chitinase activity of E. coli-pEHchiA74∆sp was ~150 mU/mL, and in E. coli-pEBchiA74∆sp, 250 mU/mL. 4Q7-pEBchiA74∆sp and 4Q7-pEHchiA74∆sp had activities of ~127 mU/mL and ~41 mU/mL, respectively. The endochitinase activity in HD1-pEBchiA74∆sp increased 42x when compared to parental HD1 strain. HD1-pEBchiA74∆sp and HD1 harbored typical bipyramidal Cry inclusions, but crystals in the recombinant were ~30% smaller. Additionally, a 3x increase in the number of viable spores was observed in cultures of the recombinant strain when compared to HD1. Bioassays against first instar larvae of M. sexta with spore-crystals of HD1 or spore-crystal-ChiA74∆sp inclusions of HD1-pEBchiA74∆sp showed LC₅₀s of 67.30 ng/cm² and 41.45 ng/cm², respectively.

Conclusions: Alkali-labile ChiA74∆sp inclusion bodies can be synthesized in E. coli and B. thuringiensis strains. We demonstrated for the first time the applied utility of synthesis of ChiA74∆sp inclusions, Cry crystals and spores in the same sporangium of HD1, a strain used successfully worldwide to control economically significant lepidopteran pests of agriculture. Our findings will allow to us develop strategies to modify expression of ChiA74∆sp while maximizing Cry crystal synthesis in commercial strains of B. thuringiensis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3903433PMC
http://dx.doi.org/10.1186/1475-2859-13-15DOI Listing

Publication Analysis

Top Keywords

cry crystals
12
chia74∆sp inclusions
12
chia74∆sp
9
bacillus thuringiensis
8
alkali-labile chia74∆sp
8
inclusions cry
8
crystals spores
8
cry crystal
8
cyta-p/stab-sd promoter
8
expression chia74∆sp
8

Similar Publications

This paper presents the reversible transformation between two polymorphs of a hexacatenar liquid crystal () with distinct fluorescence colors at room temperature (RT). This method utilizes mechanical pressure (mechanochromism) and an electric field (E-field-chromism). The molecule (), designed with a pyrene core and 1,2,3-triazole linkers, exhibits a blue-emissive crystalline (CRY) polymorph () and a green-emissive liquid crystalline (LC) polymorph () at RT, depending on the cooling rate from the liquid phase.

View Article and Find Full Text PDF

Phylogenetic analysis and homology modelling of a new Cry8A crystal protein expressed in a sporulating soil bacterium.

J Struct Biol

January 2025

Postgraduate Program in Industrial Biotechnology, Tiradentes University, Aracaju, Sergipe, Brazil; Department of Morphology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil. Electronic address:

Cry proteins, commonly found in gram-positive soil bacteria, are used worldwide as aerial sprays or in transgenic plants for controlling crop pest populations and as insect vectors. Via PCR analysis, a spore producing soil isolate (BV5) was speculated to encode a Cry gene. Partial nucleotide sequence of the amplified PCR fragment showed homology with the Cry8 genes present in GenBank.

View Article and Find Full Text PDF

Bacillus thuringiensis (Bt) produces Cry toxins that are used to control insect pests worldwide. However, evolution of insect resistance threatens the sustainable application of these toxins. In some cases, Cry toxin resistance has been linked to mutations affecting toxin receptors expression.

View Article and Find Full Text PDF

Cry1Ac toxin binding in the velvetbean caterpillar : study of midgut aminopeptidases N.

Front Physiol

October 2024

Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.

Article Synopsis
  • - The velvetbean caterpillar significantly affects soybean crops in Brazil, and biopesticides like Bt (Bacillus thuringiensis) utilize Crystal toxins (Cry) to kill these pests by targeting their midgut receptors, such as aminopeptidase N (APN).
  • - This study aims to identify and characterize APNs in the caterpillar’s midgut to understand how Cry1Ac interacts with its receptors, which is vital for managing pest resistance against the biopesticide.
  • - Research methods included immunohistochemistry, aminopeptidase activity assays, and mass spectrometry, leading to the discovery of seven APNs potentially involved in Cry toxin binding, as well as variations in expression levels
View Article and Find Full Text PDF
Article Synopsis
  • Transgenic crops that produce Cry proteins, derived from the bacterium Bt, are widely used to combat key crop pests like the noctuid moth, but resistance to these proteins, particularly Cry1Ac, has been developing in pest populations.
  • A study investigated the genetic basis of this field-evolved resistance in moth populations from various locations in the southern U.S. and found extensive gene mixing among them.
  • Unlike previous lab findings, the resistance was linked to an increase in a cluster of nine trypsin genes rather than specific mutations in known resistance genes, indicating that there may be multiple genetic factors at play in the development of resistance.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!