Background: The endochitinase ChiA74 is a soluble secreted enzyme produced by Bacillus thuringiensis that synergizes the entomotoxigenecity of Cry proteins that accumulate as intracellular crystalline inclusion during sporulation. The purpose of this study was to produce alkaline-soluble ChiA74∆sp inclusions in B. thuringiensis, and to determine its effect on Cry crystal production, sporulation and toxicity to an important agronomical insect, Manduca sexta. To this end we deleted the secretion signal peptide-coding sequence of chiA74 (i.e. chiA74∆sp) and expressed it under its native promoter (pEHchiA74∆sp) or strong chimeric sporulation-dependent cytA-p/STAB-SD promoter (pEBchiA74∆sp) in Escherichia coli, acrystalliferous B. thuringiensis (4Q7) and B. thuringiensis HD1.
Results: Based on mRNA analyses, up to ~9-fold increase in expression of chiA74∆sp was observed using the cytA-p/STAB-SD promoter. ChiA74∆sp (~70 kDa) formed intracellular inclusions that frequently accumulated at the poles of cells. ChiA74∆sp inclusions were dissolved in alkali and reducing conditions, similar to Cry crystals, and retained its activity in a wide range of pH (5 to 9), but showed a drastic reduction (~70%) at pH 10. Chitinase activity of E. coli-pEHchiA74∆sp was ~150 mU/mL, and in E. coli-pEBchiA74∆sp, 250 mU/mL. 4Q7-pEBchiA74∆sp and 4Q7-pEHchiA74∆sp had activities of ~127 mU/mL and ~41 mU/mL, respectively. The endochitinase activity in HD1-pEBchiA74∆sp increased 42x when compared to parental HD1 strain. HD1-pEBchiA74∆sp and HD1 harbored typical bipyramidal Cry inclusions, but crystals in the recombinant were ~30% smaller. Additionally, a 3x increase in the number of viable spores was observed in cultures of the recombinant strain when compared to HD1. Bioassays against first instar larvae of M. sexta with spore-crystals of HD1 or spore-crystal-ChiA74∆sp inclusions of HD1-pEBchiA74∆sp showed LC₅₀s of 67.30 ng/cm² and 41.45 ng/cm², respectively.
Conclusions: Alkali-labile ChiA74∆sp inclusion bodies can be synthesized in E. coli and B. thuringiensis strains. We demonstrated for the first time the applied utility of synthesis of ChiA74∆sp inclusions, Cry crystals and spores in the same sporangium of HD1, a strain used successfully worldwide to control economically significant lepidopteran pests of agriculture. Our findings will allow to us develop strategies to modify expression of ChiA74∆sp while maximizing Cry crystal synthesis in commercial strains of B. thuringiensis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3903433 | PMC |
http://dx.doi.org/10.1186/1475-2859-13-15 | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemistry, Dankook University, 119, Dandae-ro, Chungnam 448-701, Korea.
This paper presents the reversible transformation between two polymorphs of a hexacatenar liquid crystal () with distinct fluorescence colors at room temperature (RT). This method utilizes mechanical pressure (mechanochromism) and an electric field (E-field-chromism). The molecule (), designed with a pyrene core and 1,2,3-triazole linkers, exhibits a blue-emissive crystalline (CRY) polymorph () and a green-emissive liquid crystalline (LC) polymorph () at RT, depending on the cooling rate from the liquid phase.
View Article and Find Full Text PDFJ Struct Biol
January 2025
Postgraduate Program in Industrial Biotechnology, Tiradentes University, Aracaju, Sergipe, Brazil; Department of Morphology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil. Electronic address:
Cry proteins, commonly found in gram-positive soil bacteria, are used worldwide as aerial sprays or in transgenic plants for controlling crop pest populations and as insect vectors. Via PCR analysis, a spore producing soil isolate (BV5) was speculated to encode a Cry gene. Partial nucleotide sequence of the amplified PCR fragment showed homology with the Cry8 genes present in GenBank.
View Article and Find Full Text PDFPestic Biochem Physiol
December 2024
School of Life Sciences, Central China Normal University, Wuhan 430070, China. Electronic address:
Bacillus thuringiensis (Bt) produces Cry toxins that are used to control insect pests worldwide. However, evolution of insect resistance threatens the sustainable application of these toxins. In some cases, Cry toxin resistance has been linked to mutations affecting toxin receptors expression.
View Article and Find Full Text PDFFront Physiol
October 2024
Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
Proc Natl Acad Sci U S A
November 2024
Department of Entomology, University of Arizona, Tucson, AZ 85721.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!