Aim: ATF3, a member of the ATF/CREB family of transcription factors, has been found to be selectively induced by calcineurin/NFAT inhibition and to enhance keratinocyte tumor formation, although the precise role of ATF3 in human skin cancer and possible mechanisms remain unknown.

Methods: In this study, clinical analysis of 30 skin cancer patients and 30 normal donors revealed that ATF3 was accumulated in skin cancer tissues. Functional assays demonstrated that ATF3 significantly promoted skin cancer cell proliferation.

Results: Mechanically, ATF3 activated Stat3 phosphorylation in skin cancer cell through regulation of p53 expression. Moreover, the promotion effect of ATF3 on skin cancer cell proliferation was dependent on the p53-Stat3 signaling cascade.

Conclusion: Together, the results indicate that ATF3 might promote skin cancer cell proliferation and enhance skin keratinocyte tumor development through inhibiting p53 expression and then activating Stat3 phosphorylation.

Download full-text PDF

Source
http://dx.doi.org/10.7314/apjcp.2013.14.12.7439DOI Listing

Publication Analysis

Top Keywords

skin cancer
32
cancer cell
16
stat3 phosphorylation
12
p53 expression
12
skin
9
atf3
8
cancer
8
keratinocyte tumor
8
cell proliferation
8
atf3 activates
4

Similar Publications

Background: Cutaneous melanoma is the leading cause of death from cutaneous malignancy and tends to metastasize lymphatically and hematogenously to the lung, liver, brain, and bone; it is a rare source of metastatic disease to the eye. Herein we provide a case report of cutaneous melanoma metastatic to the ciliary body and choroid involving clinical examination, slit lamp photography, and B-scan ultrasonography.

Result: A 55-year-old female with known metastatic cutaneous melanoma presented with pain, a large ciliochoroidal mass, visual decline, and diffuse intraocular inflammation.

View Article and Find Full Text PDF

Trends in the epidemiology of intravascular device-associated bacteremia among French hematology patients: insights from the SPIADI prospective multicenter study, 2020-2024.

Ann Hematol

January 2025

Mission Nationale Surveillance et Prévention des Infections Associées aux Dispositifs Invasifs (SPIADI), Centre d'Appui pour la Prévention des Infections Associées aux Soins en région Centre val de Loire, Centre Hospitalier Régional Universitaire, Hôpital Bretonneau, Tours, France.

Hematology patients require central venous catheters for cancer treatment and nutrition, which increases their risk of intravascular device-associated bacteremia. In the absence of recent data, we investigated intravascular device-associated bacteremia in this specific context. A three-month surveillance was conducted annually in 27 hematology wards, using a protocol derived from the HAI-Net ICU ECDC protocol (2020-2024).

View Article and Find Full Text PDF

Transcription factor networks in cellular quiescence.

Nat Cell Biol

January 2025

Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA.

Many of the cells in mammalian tissues are in a reversible quiescent state; they are not dividing, but retain the ability to proliferate in response to extracellular signals. Quiescence relies on the activities of transcription factors (TFs) that orchestrate the repression of genes that promote proliferation and establish a quiescence-specific gene expression program. Here we discuss how the coordinated activities of TFs in different quiescent stem cells and differentiated cells maintain reversible cell cycle arrest and establish cell-protective signalling pathways.

View Article and Find Full Text PDF

Yttrium oxide nanoparticles (YONPs) have emerged as a promising avenue for cancer therapy, primarily due to their distinctive properties that facilitate selective targeting of cancer cells. Despite their potential, the therapeutic effects of YONPs on human epidermoid skin cancer remain largely unexplored. This study was thus conducted to investigate the impact of YONPs on both human skin normal and cancer cells, with an emphasis on assessing their cytotoxicity, genotoxicity, and the mechanisms underlying these effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!