Aim: The aim of our study was to investigate whether the tandem repeat polymorphism in D18S452 microsatellite marker at locus 18p11.2 is a risk factor of bipolar affective disorder (BPAD) in Kashmiri population.
Materials And Methods: The repeat polymorphism in D18S452 was evaluated by polymerase chain reaction (PCR) analysis of in 74 diagnosed BPAD patients and 74 controls subjects.
Results: Tandem repeat (300 bp*) allele frequency was found to be 1.35% in controls and 8.108% in cases. The tandem repeat (250 bp*) allele frequency was found to be in 91.89% in cases and 98.65% in controls. The 252 bp/252 bp genotype was found to be present in 89.18% of cases and 98.64% of controls, the 300 bp/300 bp genotype in 5.40% of cases and 1.35% of controls and the 252 bp/300 bp variant in 5.40% of cases and none among the controls. Although the proportion of patients homozygous for tandem repeat (300 bp/300 bp) was higher in cases than in controls, the difference was not statistically significant when 252 bp/252 bp genotype was taken as reference (odds ratio [OR]=4.4242; 95% confidence interval [CI] 0.4822-40.5924); P=0.1529). However, when the frequency of heterozygous genotype (252 bp/300 bp) was compared with 252 bp/252 bp statistical significance was observed (OR=8.0603; 95% CI 1.1112-58.4646; P=0.0383).
Conclusion: This is the first study reporting a significant association between D18S452 maker with tandem repeat polymorphism in heterozygous condition (252 bp/300 bp) and the development of BPAD in Kashmiri population.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3890926 | PMC |
http://dx.doi.org/10.4103/0019-5545.120567 | DOI Listing |
Funct Plant Biol
January 2025
National Institute for Genomics and Advanced Biotechnology (NIGAB), NARC, Park Road, Islamabad 45500, Pakistan.
Rice (Oryza sativa ) is a crucial staple crop worldwide, providing nutrition to more than half of the global population. Nonetheless, the sustainability of grain production is increasingly jeopardized by both biotic and abiotic stressors exacerbated by climate change, which increases the crop's rvulnerability to pests and diseases. Genome-editing by clustered regularly interspaced short palindromic repeats and CRISPR-associated Protein 9 (CRISPR-Cas9) presents a potential solution for enhancing rice productivity and resilience under climatic stress.
View Article and Find Full Text PDFEpilepsia
January 2025
Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.
Objective: Somatic variants causing epilepsy are challenging to detect, as they are only present in a subset of brain cells (e.g., mosaic), resulting in low variant allele frequencies.
View Article and Find Full Text PDFCancer Immunol Immunother
January 2025
State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China.
Microsatellite stable (MSS) colorectal cancer (CRC) is a subtype of CRC that generally exhibits resistance to immunotherapy, particularly immune checkpoint inhibitors such as PD-1 blockade. This study investigates the effects and underlying mechanisms of combining PD-1 blockade with IDO1 inhibition in MSS CRC. Bioinformatics analyses of TCGA-COAD and TCGA-READ cohorts revealed significantly elevated IDO1 expression in CRC tumors, correlating with tumor mutation burden across TCGA datasets.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA.
Background: Alzheimer's Disease (AD) is a common neurodegenerative disorder affecting >35 million people worldwide. Despite extensive genetic studies, the identified factors only explain a small fraction of the heritable risk of AD. This suggests the contribution of yet-unknown genetic factors to the development of AD, such as tandem repeats (TRs).
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
Background: Classical genome-wide association studies (GWAS) of Alzheimer's disease (AD), which successfully identified over 75 risk loci to date, are limited to the content of the imputation panels that typically do not cover all types of genetic variation, e.g., tandem repeats encompassing >55% of human genome.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!