Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The goal of this study was to find an efficient method of energy transmission for application in an anthropomorphic underactuated body-powered (BP) prosthetic hand. A pulley-cable finger and a hydraulic cylinder finger were designed and tested to compare the pulley-cable transmission principle with the hydraulic cylinder transmission principle. Both fingers had identical dimensions and a low mass. The only thing that differed between the fingers was the transmission principle. The input energy was measured for a number of tasks. The pulley-cable finger required more input energy than the hydraulic cylinder finger to perform the tasks. This was especially the case in tasks that required high pinch forces. The hydraulic cylinder transmission is therefore the more efficient transmission for application in BP prosthetic fingers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1682/JRRD.2012.12.0223 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!